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Much attention has been paid to the question of how Bayesian integra-
tion of information could be implemented by a simple neural mecha-
nism. We show that population vectors based on point-process inputs
combine evidence in a form that closely resembles Bayesian inference,
with each input spike carrying information about the tuning of the input
neuron. We also show that population vectors can combine information
relatively accurately in the presence of noisy synaptic encoding of tuning
curves.

1 Introduction

The brain uses populations of spiking neurons to encode, communicate,
and combine sources of information. There is considerable interest in
whether these processes might be optimal as specified by Bayesian infer-
ence (Körding & Wolpert, 2004; Ma, Beck, Latham, & Pouget, 2006; Beck
et al., 2008; Fischer & Peña, 2011). In particular, under certain circumstances
(exponential families, including gaussian families), Bayes’ theorem can
combine information from two sources in a simple way: the posterior mean
is a weighted sum of the two means representing the two sources, with the
weights determined by the relative size of the two precision parameters
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(for gaussians, the two reciprocals of the variances). Here we consider the
combination of information by population vectors. While population vec-
tors were first introduced in the context of motor control (Georgopoulos,
Schwartz, & Kettner, 1986), our discussion concerns general cortical infor-
mation processing.

Let θ ∈ [0, 2π ) be a directional tuning parameter and let θn ∈ [0, 2π ) be
the preferred direction of neuron n, for n = 1, . . . , N. We write the unit vec-
tor representation of θ as u = u(θ ) = (cos θ, sin θ ). Let yn be the spike count
(in a given time window) for neuron n, and let α = ∑N

n=1 yn be the total
number of spikes in the population. The unnormalized population vector
is

P =
N∑

n=1

yn(cos θn, sin θn). (1.1)

Let C̄ = α−1�N
n=1yn cos θn and S̄ = α−1�N

n=1yn sin θn. In directional data anal-
ysis, (C̄, S̄), which is analogous to the sample mean, is called the sam-
ple mean resultant vector, with length R̄ = ‖(C̄, S̄)‖, and the corresponding
sample precision is expressed as κ̄ = αR̄. The estimate of direction provided
by the population vector in angular form is

θ̄ = arctan(S̄/C̄)

= arctan

(
�N

n=1yn sin θn

�N
n=1yn cos θn

)
,

and the corresponding unit vector estimate can be written as

ū = (cos θ̄ , sin θ̄ ).

The points we make in this article are closely related to, but different from,
observations made previously in the literature: first, population vectors
combine information similarly to Bayes’ theorem, using linear combina-
tions with coefficients based on dispersions; second, population vectors can
combine information relatively accurately in the presence of modest mis-
specifications in tuning curves.

2 Optimal Combination for von Mises Tuning Curves

We take the spike counts to be random variables Yn (observed values being
yn) and assume the spike counts Yn are Poisson distributed, independently
across neurons, with means λn = fn(θ ) where

fn(θ ) = A exp{B cos(θ − θn)}
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has the form of a von Mises pdf (an exponential family on the unit circle;
Fisher, 1996). Using unit vectors, we can write this as

fn(θ ) = A exp{BuTun},

where un = (cos θn, sin θn). The population parameters are amplitude A and
concentration B. For this model, Bayesian inference can be expressed in
closed form. We review the posterior density of the stimulus given the
population response: p(θ |y) ∝ p(y|θ )p(θ ), where p(y|θ ) is the likelihood and
p(θ ) is the prior. For a uniform prior, if

∑N
n=1 fn(θ ) is constant in θ , the pos-

terior distribution also has a von Mises form: p(θ |y) = Ã exp{κ̂ cos(θ − θ̂ )}.
Where Ã is a normalizing constant, we now focus on κ̂ and θ̂ . The unnor-
malized posterior estimate of direction is given by

Q = B
N∑

n=1

yn(cos θn, sin θn).

Let Ĉ = B
∑N

n=1 yn cos(θn) and Ŝ = B
∑N

n=1 yn sin(θn). The precision of the
posterior distribution may be summarized by κ̂ = ‖(Ĉ, Ŝ)‖. The Bayes es-
timate in angular form is

θ̂ = arctan(Ŝ/Ĉ)

= arctan

(
�N

n=1yn sin θn

�N
n=1yn cos θn

)
,

which can be written as a unit vector

û = (cos θ̂ , sin θ̂ ).

Note that θ̂ = θ̄ . In other words, in this special case of a population with
von Mises tuning curves, all having the same precision coefficient B, with
dense uniformly distributed preferred directions (specifically,

∑N
n=1 fn(θ )

is constant in θ ), and Poisson spiking, the population vector estimate of
direction is also the Bayes estimate.

We can rewrite Q as

Q = κ̂û.

The posterior density based on combining two populations (see Figures 1A
and 1B) is p(θ |y1, y2) ∝ p(θ |y1)p(θ |y2)p(θ ). For a uniform prior, the poste-
rior is also a von Mises distribution with unnormalized Bayes estimate of
direction,

Qcombined = κ̂1û1 + κ̂2û2,
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Figure 1: (A) Combining sources of information. Input: combining information
within each distinct population (blank and stripes). Output: Combining infor-
mation across populations to represent a tuning parameter θ . (B) Two von Mises
functions corresponding to different prototypical population tuning curves (Pa-
rameters: A1 = 2, B1 = 2.5; A2 = 0.4, B2 = 5). (C) Von Mises–like tuning curves,
with fixed response range between 10 Hz and 40 Hz and variable tuning width.
The tuning width is measured at half amplitude. For panels in the bottom row,
the blue trace is PV and the black trace is maximum likelihood (Bayes). All re-
sults are in response to a stimulus of 0 degrees. (E) Combining input sources
within a population for von Mises–like tuning curves with different widths.
Here, the error can be much larger for PV at the narrower widths. (F, G, H) Ex-
amining robustness under wrong tuning models. The asterisk indicates that a
wrong model has been used for tuning curve width (F), noise amplitude (G),
and noise frequency (H). In each case, PV has smaller error at most settings.
The true model is shown in panel D (gray), single-peak tuning curve width of
150 degrees. The black multipeak tuning curve in panel D includes additive
cosine high-frequency noise over the stimulus, frequency = 10 cycles/domain,
amplitude = 2 Hz. The noise frequency was fixed at 10cycles/domain in G. The
noise amplitude was fixed at 2 Hz in panel H. MSE is based on 5000 trials for all
simulations.

and precision parameter κ̂3 = ‖Qcombined‖. The unit vector Bayes estimate
becomes

û3 = κ̂−1
3 (κ̂1û1 + κ̂2û2). (2.1)

Note that the posterior distribution is determined by the location parameter
û3 and the precision parameter κ̂3.

3 Combining Information with Population Vectors

Writing the unnormalized population vector as P = αR̄ū, we have

P = κ̄ū,
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and combining two populations, we get

Pcombined = κ̄1ū1 + κ̄2ū2.

Let κ̄3 = ‖Pcombined‖. The unit vector estimate becomes

ū3 = κ̄−1
3 (κ̄1ū1 + κ̄2ū2), (3.1)

which is very similar to equation 2.1. Specifically, the unit vector represent-
ing the combined information is a linear combination of the unit vectors
representing the information from each of the two populations, with coef-
ficients proportional to their respective precisions.

4 Efficiency and Robustness

We simulated N = 200 input neurons, equally spaced θn, under von Mises
fn(θ ) with a fixed response range (10–40 Hz). We define tuning width as
the width of the tuning curves at half amplitude (see Figure 1C). The mean
squared error (MSE) of PV (θ̄ ) and optimal (θ̂ ) estimators are plotted as a
function of tuning width in Figure 1E. In this case, PV has high statistical
efficiency.

Now we examine the performance of θ̄ and θ̂ when there is a mismatch
between the data-generating model for θ and the model assumed in com-
puting the estimates. We consider both mismatches in tuning curve width
(see Figure 1F) and mismatches due to high-frequency noise (see Figures
1G and 1H). For these departures from the data-generating model, PV is
more robust. The simulation begins by generating trials from a true encod-
ing model (see Figure 1D, gray single-peak tuning curve, 150 degree width).
When decoding, we assume the respective wrong models (see Figures 1F
to 1H) before computing the estimates of θ . For all of these cases in Fig-
ures 1F to 1H, the error is smaller for PV than for the wrong-model optimal
estimate.

5 Discussion

We wrote the Bayes estimate, equation 2.1, in the von Mises case for two
reasons. First, it is a weighted sum of the location parameters, with weights
determined by the relative size of the two precision parameters, analogous
to the gaussian case. This could be viewed as a consequence of the von
Mises distribution being an exponential family on the circle. In this special
case, the posterior location and precision determine the posterior distribu-
tion itself. Although in principle the posterior density can be calculated too,
this requires a normalization constant, and it is plausible that if the nervous
system were propagating information in terms of posterior distributions,
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it might use only location and precision at each step. This is part of the
argument used by previous authors. Second, the Bayes estimate and the
posterior precision are found from a merged population vector, meaning a
population vector that merges the spike counts from the two populations,
as in equation 3.1. More generally, regardless of the tuning curve, popula-
tion vectors can provide Bayes-like integration of information in the sense
that equation 3.1 is similar to equation 2.1, with uncertainty being repre-
sented by the magnitude of the vector (the shorter the vector, the greater
the uncertainty). Exact optimality for von Mises tuning curves may be con-
sidered a special case of the more general basis function argument given
by Ma et al. (2006). However, the derivation in this special case is simpler
mathematically and conceptually: we consider inputs to be point processes
and require only that each upstream preferred direction θn is encoded as a
single pair of synapses in the form (cos θn, sin θn), so that each spike from
the upstream neuron contributes the information (cos θn, sin θn) toward the
sum in equation 1.1; no auxiliary network computations (such as winner-
take-all, or precision found from a separate gain calculation) are needed.

While optimal estimation using richer basis representations can accom-
modate subtle alterations in the shapes of tuning functions, synaptic encod-
ing of these representations would run the risk of poor performance when
there is noise in the synaptic weights. It is possible that by using only a pair
of synapses for transmitting information, population vectors trade some
loss of statistical efficiency for a gain in robustness. Our simulations show
that in certain circumstances, population vector integration of information
can be less sensitive to tuning curve misspecification than Bayesian inte-
gration. This is consistent with the observation that the population vector
may be considered to involve the first Fourier component of a general tun-
ing curve (Seung & Sompolinsky, 1993), and it acts as a low-pass filter in
the presence of high-frequency noise. Building on a different observation
about the way population vectors can be considered Bayes-like (Shi & Grif-
fiths, 2009), the approach outlined by Ma et al. (2006) has been adapted to
account for features of the stimulus space (Ganguli & Simoncelli, 2014), and
the benefits of Bayesian integration have been documented in that context.
It would be interesting to consider the extent to which such representations
are robust to misspecifications of tuning curve basis functions represented
by synaptic weights.

Appendix A: Deriving the Likelihood of the Response

P(y|θ ) =
N∏

n=1

P(yn|θ )

=
N∏

n=1

Poisson(yn; λn = fn(θ ))
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=
N∏

n=1

(
fn(θ )yn exp{− fn(θ )}

yn!

)

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

}) (
N∏

n=1

fn(θ )yn

)

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

}) (
N∏

n=1

exp{yn log( fn(θ ))}
)

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

}) (
exp

{
N∑

n=1

yn log( fn(θ ))

})

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

})

×
(

exp

{
N∑

n=1

yn log(A exp{B cos(θ − θn)})

})

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

})

×
(

exp

{
N∑

n=1

yn(log(A) + B cos(θ − θn))

})

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

}) (
exp

{
N∑

n=1

yn log(A)

})

×
(

exp

{
N∑

n=1

ynB cos(θ − θn)

})

=
(

N∏
n=1

1
yn!

) (
exp

{
−

N∑
n=1

fn(θ )

}) (
A

∑N
n=1 yn

)

×
(

exp

{
B

N∑
n=1

yn cos(θ − θn)

})
(A.1)

The first three terms on the left are constant over θ . Hence, P(y|θ ) is sim-
ply an unnormalized von Mises distribution governed by the last term on
the right.

Let Ŝ = B
∑N

n=1 yn sin(θn), and Ĉ = B
∑N

n=1 yn cos(θn). Then we can
write,
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P(y|θ ) = Ã1 exp{κ̂ cos(θ − θ̂ )}, (A.2)

where the concentration is κ̂ = ‖(Ĉ, Ŝ)‖, the central tendency is θ̂ =
arctan(Ŝ/Ĉ), û = (cos θ̂ , sin θ̂ ), and Ã1 is a constant obtained from the three
terms on the left.

Appendix B: Deriving the Posterior for a Single Population

p(θ |y) ∝ p(y|θ )p(θ ) where p(y|θ ) is the likelihood and p(θ ) is the prior. For
a uniform prior and following the derivation in appendix A, the posterior
distribution also has a von Mises form: p(θ |y) = Ã2 exp{κ̂ cos(θ − θ̂ )}, where
the normalizing constant is defined as Ã2 = [2πI0(κ̂ )]−1 with I0 being the
modified Bessel function of order zero.

Appendix C: Deriving the Combined Posterior for Two Populations

The posterior density based on combining two populations is p(θ |y1, y2) ∝
p(θ |y1)p(θ |y2)p(θ ):

P(θ |y1)P(θ |y2) ∝ (exp{κ̂1 cos(θ − θ̂1)})(exp{κ̂2 cos(θ − θ̂2)})

= exp{κ̂1 cos(θ − θ̂1) + κ̂2 cos(θ − θ̂2)}
= exp{κ̂3 cos(θ − θ̂3)}. (C.1)

Let Ŝ3 = ∑2
n=1 κ̂n sin(θ̂n), and Ĉ3 = ∑2

i=1 κ̂n cos(θ̂n). Then we can write κ̂3 =
‖(Ĉ3, Ŝ3)‖ = ‖κ̂1û1 + κ̂2û2‖. The central tendency is θ̂3 = arctan(Ŝ3/Ĉ3), û3 =
(cos θ̂3, sin θ̂3) = κ̂−1

3 (κ̂1û1 + κ̂2û2).
For a uniform prior, the posterior is also a von Mises distribution,

p(θ |y1, y2) = Ã3 exp{κ̂3 cos(θ − θ̂3)}, where Ã3 is a function of κ̂3 and is com-
puted in the same way as Ã2.
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