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Abstract

Pooling neural imaging data across subjects requires aligning recordings from
different subjects. In magnetoencephalography (MEG) recordings, sensors
across subjects are poorly correlated both because of differences in the ex-
act location of the sensors, and structural and functional differences in the
brains. It is possible to achieve alignment by assuming that the same re-
gions of different brains correspond across subjects. However, this relies on
both the assumption that brain anatomy and function are well correlated,
and the strong assumptions that go into solving the underdetermined inverse
problem given the high dimensional source space. In this paper, we inves-
tigated an alternative method that bypasses source-localization. Instead, it
analyzes the sensor recordings themselves and aligns their temporal signa-
tures across subjects. We used a multivariate approach, multi-set canonical
correlation analysis (M-CCA), to transform individual subject data to a low
dimensional common representational space. We evaluated the robustness of
this approach over a synthetic dataset, by examining the effect of different
factors that add to the noise and individual differences in the data. On a
MEG dataset, we demonstrated that M-CCA performs better than a method
that assumes perfect sensor correspondence and a method that applies source
localization. Lastly, we described how the standard M-CCA algorithm could
be further improved with a regularization term that incorporates spatial sen-
sor information.
Keywords: Subject alignment, Magnetoencephalography, Common
representational space, Canonical correlation analysis
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1. Introduction
In neuroimaging studies, data are frequently combined from many subjects
to provide results that represent a central tendency across a population. To
achieve this, it is necessary to find an alignment between brain activities
recorded from different subjects. In MEG recordings, corresponding sensors
across subjects can be poorly correlated both because of differences in the
exact location of the sensors1 (i.e. different head position in the helmet), and
structural and functional differences in the brains.

It is possible to achieve alignment by assuming that the same regions of
different brains correspond across subjects. Corresponding brain regions are
found by first localizing brain sources for each subject. The most commonly
used source localization method computes the minimum-norm current esti-
mates (MNE) in an inverse modeling approach (Gramfort et al., 2014). In
a separate second step, typically using individual MRIs, the sources for in-
dividual subjects are morphed onto sources in a common ‘average’ brain2.
The resulting morphed sources are considered to correspond from subject
to subject. The validity of this approach depends both on the assumption
that brain anatomy and function are well aligned and on the strong assump-
tions that go into solving the inverse problem of source localization. These
steps and assumptions are satisfactory as long as the localization errors com-
bined with the distortions in morphing are small relative to the effects being
investigated.

In this paper, we proposed the use of multi-set canonical correlation anal-
ysis (M-CCA) to transform individual subject data to a low dimensional
common representational space where different subjects align. The trans-
formation is obtained by maximizing the consistency of different subjects’
data at corresponding time points3 (Kettenring, 1971). This way, our ap-

1Note that we use ‘sensor’ to indicate the magnetic coils outside of the head and ‘source’
to indicate the origin of the measured signal on the cortex.

2Typically the standard MNI305 brain is used.
3Maximizing the consistency across different subjects has been previously used to align

fMRI data in human ventral temporal cortex (Haxby et al., 2011). Our proposed method,
in addition, simultaneously reduces dimensionality as the dimensions in the common rep-
resentational space are ranked by how well subjects align.

2



proach utilizes the rich temporal information that MEG sensor data offers
and circumvents the need to find anatomical correspondence across subjects.
This gives many advantages. Firstly, M-CCA does not rely on any assump-
tions that go into solving the source localization problem. Secondly, M-CCA
focuses on capturing distributed patterns of activity that have functional
significance, and establishes correspondence across subjects based on these
patterns. Therefore, M-CCA does not rely on the assumption that brain
anatomy and functions are well correlated. It simultaneously deals with
three factors that contribute to subject misalignment in sensor data: 1) the
structural differences of the brains; 2) the sensor location differences dur-
ing MEG recordings across subjects; and 3) the different structure-function
mappings in different subjects.

The output of the M-CCA analysis can be used in multiple ways. For
example, one might want to find the time windows over which the differences
between conditions are decoded in the neural signal (Norman et al., 2006).
M-CCA allows one to go from intra-subject classification to inter-subject
classification where one group of subjects can be used to predict data in a
new subject. M-CCA may also be used to build a group model that studies
the sequence of temporal mental stages in a task (Anderson et al., 2016). Al-
though temporal data from individual subjects are too sparse to be analyzed
separately, once the data from all subjects are aligned, they can be combined
to improve model parameter estimation. Once important time windows of
activity modulation have been identified in such a group model, it is possible
to go back to individual subjects and observe the corresponding localized
signals.

M-CCA has been applied previously in fMRI studies. Rustandi et al.
(2009) applied the M-CCA method to achieve successful prediction across
multiple fMRI subjects. Li et al. (2012) used M-CCA to integrate multiple-
subject datasets in a visuomotor fMRI study, where meaningful CCA com-
ponents were recovered with high inter-subject consistency. Correa et al.
(2010) reviewed a wide range of neuroimaging applications that would po-
tentially benefit from M-CCA. This not only includes a group fMRI analysis
pooling multiple subjects, but also fusion of data from different neuroimaging
modalities (i.e. fMRI, sMRI and EEG). MEG is very different from fMRI
in terms of temporal resolution and the way the underlying neural signal is
generated. To align MEG data, in this paper we first proposed the pipeline of
applying M-CCA to MEG data. Second, we evaluated the suitability of the
method with a synthetic dataset that is realistic to MEG recordings, which
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models: 1) the generation of the neural signal in the brain sources; 2) the
mapping from activity at the brain sources to activity at the sensors; and 3)
the noise added to the sensors during the measurement. We explored differ-
ent factors that could add to the noisiness of the data, including increased
levels of noise added to the sensors, and continuous head movement during
the recordings that can further blur the sensor measurement (Stolk et al.,
2013; Uutela et al., 2001). We also explored different factors that could add
to the individual differences in the data, including variation in brain patterns
across subjects, different noise conditions across subjects, and unique func-
tional brain responses in each subject. M-CCA performed robustly in the
presence of these factors.

Finally, we demonstrated on a real MEG dataset that M-CCA performed
better than a method that assumes perfect sensor correspondence and a
method that applies source localization. We also showed how the standard M-
CCA algorithm could be further modified to take into account the similarity
of M-CCA sensor mappings across different subjects. A documented package
has been made available to pre-process data and apply M-CCA to combine
data from different MEG subjects (https://github.com/21zhangqiong/
MEG_Alignment).

2. Materials and Methods

2.1. MEG Experiment

Twenty individuals from the Carnegie Mellon University community com-
pleted the experiment, which was originally reported in Borst et al. (2016).
Two subjects were excluded from analysis (one fell asleep and one performed
subpar). All were right-handed and none reported a history of neurological
impairment. The experiment consisted of two phases: a training phase in
which subjects learned word pairs and a test phase in which subjects com-
pleted an associative recognition task. The test phase was scheduled the day
after the training phase and took place in the MEG scanner. During the test
phase subjects had to distinguish between targets (learned word pairs) from
foils (alternative pairings of the learned words). Subjects were instructed to
respond quickly and accurately. There were four binary experimental fac-
tors: probe type (targets or foils), word length (short: with 4 or 5 letters;
long: with 7 or 8 letters), associative fan (one: each word in the pair appears
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only in that pair; two: each word in the pair appears in two pairs), and
response hand (left or right). Subjects completed a total of 14 blocks (7 with
left-handed responses, 7 right-handed), with 64 trials per block. MEG data
were recorded with a 306-channel Elekta Neuromag (Elekta Oy) whole-head
scanner, which was digitized at 1 kHz. A band-pass filter (0.5−50 Hz) was
applied using FieldTrip toolbox (Oostenveld et al., 2011) before the data
was down-sampled to 100 Hz 4. As a pre-processing step to compensate
for head movement across different sessions on an individual subject, sensor
data were realigned to average head positions using MNE-based interpola-
tion (Hämäläinen & Ilmoniemi, 1994). Alternative methods to correct for
head movement exist, including the signal space separation (SSS) method
(Nenonen et al., 2012) and an extension of SSS-based method that takes
care of more challenging cases of head movement across different age groups
(Larson & Taulu, 2016). More details of the experiment can be found in the
original report of this MEG dataset (Borst et al., 2016).

2.2. Alignment by Correspondence of Brain Sources

We compare M-CCA with two other methods. The first method assumes
that the same sensors correspond across subjects. The second method is to
perform source localization first, and then assume that the same sources cor-
respond across subjects. In MEG recordings, the measured magnetic signal
does not directly indicate the location and magnitude of cortical currents,
which can be found by projecting the sensor data onto the cortical surface
with minimum norm estimates (MNE). The MNE method attempts to find
the distribution of currents on the cortical surface with the minimum overall
power that can explain the MEG sensor data (Gramfort et al., 2014). This
is done by first constructing 3D cortical surface models from the subjects’
structural MRIs using FreeSurfer, which are then manually co-registered with
the MEG data (Dale et al., 1999; Fischl, 2012). A linear inverse operator
is used to project sensor data onto the source dipoles placed on the cortical
surface. These source estimates are then morphed onto the standard MNI
brain using MNE’s surface-based normalization procedure. Source estimates
on the standard MNI brain are thought to correspond across subjects. More

4Based on Nyquist sampling criterion, 100 Hz sampling rate is sufficient to capture the
neural signal filtered at 0.5-50 Hz.
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details for obtaining source localization with MNE over the current MEG
dataset can be found in the original report (Borst et al., 2016).

2.3. Alignment in the Common Representational Space

This section outlines our proposed approach to align MEG subjects. M-
CCA is used to find the optimal transformation for each subject from the
activity of 306 sensors to a common representational space. Inter-subject
correlations of the transformed data are maximized across subjects in the
common representational space.

2.3.1. Application of M-CCA to MEG Data

This section describes the pipeline to apply M-CCA to MEG datasets. We
start by pre-processing the sensor data for each subject. To overcome noise
in the sensor data of individual trials, multiple trials are averaged to obtain a
highly reliable representation of the change in sensor activity, which is similar
to obtaining event-related potential waveforms in the EEG literature (Picton
et al., 2000). When trials have a fixed trial length, this averaging procedure
is straightforward. However, in the current experiment, trials are variable
in their durations, as the responses made by participants are self-paced. In
order to align time samples across trials before averaging, we consider only
the samples from the first half second (50 samples given the sampling rate)
and the last half second (another 50 samples) of a trial in our application
of M-CCA. Neural signals of the same cognitive event have less trial-to-trial
variability when they are closely locked to the stimulus/response. When they
are further away from the stimulus/response, they are less reliably recovered
in the average signal. The process of averaging is repeated for each condi-
tion, as we potentially have different latent components for different condi-
tions after averaging. With four binary factors (probe type, word length,
associative fan, response hand), we have 16 conditions. Essentially, over an
MEG dataset, the transformation of subject data in M-CCA is obtained by
maximizing the consistency of different subjects both in response to different
temporal points in a trial, and in response to different experimental condi-
tions. With 100 samples per condition after averaging over trials, we have a
1600 × 306 matrix Sk from 306 sensors for each of 18 subjects as the initial
input to the M-CCA procedure (Figure 1). This format of input data is very
different to that of fMRI data where temporal resolution within a single trial
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Figure 1: This figure illustrates application of M-CCA to 18 subjects. Sk is the
averaged data (across all trials for each condition) from 306 sensors for subject
k, each with 1600 time points; Xk has 50 PCA components for subject k, each
with 1600 time points; Yk has 10 CCA components, each with 1600 time points;
W1,W2, . . . ,W18 are PCA weights obtained for each subject independently; and
H1, H2, . . . ,H18 are CCA weights obtained jointly from all subjects by maximizing
all of the inter-subject correlations.

is limited. To have enough temporal information to align multiple datasets,
M-CCA is typically applied to fMRI data either using a long stream of con-
tinuous scans or a series of trials where there is unique temporal information
for each trial (Li et al., 2012; Rustandi et al., 2009). The finer temporal
resolution in MEG opens up opportunities to use M-CCA to align subjects
in a wider range of experimental tasks (e.g. repeated-trial design).

To reduce dimensionality and remove subject-specific noise, the next step
after obtaining Sk is to perform spatial PCA. M-CCA is then applied to
the top 50 PCA components from each subject instead of directly to the
sensor data Sk. This results in 18 matrices of dimension 1600 × 50, which
are the inputs Xk to the M-CCA analysis for subjects k = 1, 2, . . . , 18. As
is illustrated in Figure 1, Wk are the PCA weights for subject k which are
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obtained independently for each subject. Hk are the CCA weights for subject
k which are obtained jointly from all subjects resulting in common CCA
dimensions Yk = XkHk. Subject data do not align in either the sensor space
or the PCA space, with Sk and Xk processed for each subject independently.
Rather, subject data align in the common representational space after M-
CCA, with Yk maximally correlated across subjects. The selection of number
of PCA components and CCA components will be discussed in the results
section.

2.3.2. M-CCA

This section discusses the mathematical details of how Hk for subjects k =
1, 2, . . . , 18 are obtained, so that after the transformation Yk = XkHk, the
new representation of data Yk is more correlated across subjects than Xk is.

We first illustrate the simplest case where we look for correspondence over
datasets from two subjects instead of many subjects. Let X1 ∈ RT×m1 and
X2 ∈ RT×m2 be PCA components from two subjects, with the same number
of time points T , and PCA dimensions m1 and m2, respectively (T = 1600,
m1 = m2 = 50 in our case). Each PCA component stored in X1 and X2 has
mean 0. The objective in canonical correlation analysis (CCA) is to find two
vectors h1 ∈ Rm1×1 and h2 ∈ Rm2×1 such that after the projection y1 = X1h1
and y2 = X2h2, y1 and y2 are maximally correlated. This is equivalent to:

argmax
h1,h2

ρ =
yT1 y2
‖y1‖‖y2‖

=
hT1R12h2√

hT1R11h1hT2R22h2
= hT1R12h2, where Rij = XT

i Xj.

There are N solutions, h(i) = (h1, h2) ∈ Rm1×1 × Rm2×1, obtained col-
lectively in a generalized eigenvalue problem with i = 1, . . . , N , subject to
the constraints hT1R11h1 = hT2R22h2 = 1 (Borga, 1998). This results in
N dimensions (each referred as a CCA component) in the common repre-
sentational space with the transformed data Y1 = [y

(1)
1 , y

(2)
1 , . . . , y

(N)
1 ] and

Y2 = [y
(1)
2 , y

(2)
2 , . . . , y

(N)
2 ]. The value of N does not exceed the smaller of m1

and m2. The resulting CCA components in the common representational
space are ranked in a decreasing order of between-subject correlations. The
earlier CCA components are the more important ones and the later compo-
nents can be removed. In other words, canonical correlation analysis finds
the shared low-dimensional representation of data from different subjects.
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M-CCA is an extension of CCA which considers more than 2 subjects.
The objective is similar to before, but now it needs to maximize the corre-
lations between every pair of subjects (i.e. inter-subject correlations) simul-
taneously. Let Xk ∈ RT×mk with k = 1, . . . ,M be datasets from M subjects
(M > 2), each with mean 0 for all columns. The objective in M-CCA is to
find M vectors hk ∈ Rmk×1, where k = 1, . . . ,M , such that after the projec-
tion yk = Xkhk, the canonical variates yk are maximally pairwise-correlated.
The objective function to maximize is formulated as:

argmax
h1,...,hM

ρ =
1

M(M − 1)

M∑
k,l=1,k 6=l

yTk yl

=
1

M(M − 1)

M∑
k,l=1,k 6=l

hTkRklhl,

where Rkl = XT
k Xl, and 1

M

∑M
k=1 h

T
kRkkhk = 1. The solution is given by

solving a generalized eigenvalue problem (Vía et al., 2007). This formulation
is not an exact maximization but an approximation of the pairwise corre-
lations, given the complexity of the problem when M > 2. It is equivalent
to the Maximum Variance (MAXVAR) generalization of CCA proposed by
Kettenring (1971). See the proof of this equivalence in (Vía et al., 2005).
Other ways of formulating the objective function in M-CCA yield similar
results (Li et al., 2009).

2.3.3. M-CCA with a Regularization Term

To further improve the application of M-CCA on subject alignment, we also
take into consideration the spatial sensor information across different sub-
jects. Projection weights that map sensor data to a given CCA component
should be similar across different subjects, given that the misalignment po-
tentially results from small spatial shifts either during sensor recordings or
from anatomical variation across subjects. We enhance this similarity (cap-
tured as the correlations of sensor weight maps across subjects) by adding a
regularization term in the M-CCA algorithm. This term is useful in situations
where there are multiple projection weights that give rise to similar results at
a given CCA dimension due to the highly correlated sensor activities. Adding
a regularization term makes sensor-to-CCA projection weights similar across
subjects while simultaneously maximizing the inter-subject correlations of
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the transformed data. This leads to more interpretable and unique projec-
tion weights, and potentially improves the resulting CCA dimensions under
certain scenarios.

Let Xk ∈ RT×mk , where k = 1, . . . ,M , be PCA components obtained
independently for each of the M subjects (M > 2), T be the number of
time points, and mk be the number of PCA components. Let Wk ∈ RS×mk ,
where k = 1, . . . ,M , be the subject-specific PCA weights (sensor-to-PCA
projection) from M subjects, and S be the number of MEG sensors. The
modified M-CCA is formulated as:

argmax
h1,...,hM

ρ =
1

M(M − 1)

M∑
k,l=1,k 6=l

(hTkRklhl + λhTkR
′
klhl)

=
1

M(M − 1)

M∑
k,l=1,k 6=l

hTk (Rkl + λR′kl)hl,

where Rkl = XT
k Xl, R′kl = W T

k Wl, and 1
M

∑M
k=1 h

T
k (Rkk + λR′kk)hk = 1.

Essentially, the inter-subject correlations of the transformed data Xkhk are
over T time points, whereas the inter-subject correlations of the sensor-to-
CCA mappingWkhk are over S sensors. This explains why the maximization
of the two components in the objective function takes a very similar format,
with only the weights differing. One can vary the emphasis given to the
regularization term via the scalor λ. λ = 0 corresponds to the M-CCA
algorithm without regularization, and very large values of λ correspond to
using the same weight maps for all subjects. The solution to the M-CCA
problem with regularization can be obtained in the same way as the standard
M-CCA by solving a generalized eigenvalue problem.

2.4. Generation of MEG Synthetic Datasets

To test the applicability of M-CCA on MEG datasets, we generate synthetic
datasets that are realistic to MEG recordings. This includes modeling the
generation of the neural signal in the brain sources, the mapping from cur-
rents at the brain sources to activities measured at the sensors, and the noise
added to the sensor during the measurement. The procedure is done sepa-
rately when simulating each new subject. Therefore, we can model subject
misalignment in sensor data explicitly, by adding individual differences in: 1)
structure of the brain; 2) sensor locations; 3) structure-function mappings;
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and 4) noise level during the recording. The first two factors of individual dif-
ferences are taken into account by using the forward models obtained directly
from the 18 experimental subjects using the MNE software. Brain sources
are modeled as current dipoles (Scherg & Von Cramon, 1985; Hamalainen
& Sarvas, 1989), and a forward model specifies how currents at the dipoles
map to activities measured at the sensors. This is calculated for each sub-
ject separately using a boundary element model (BEM) based on individual
head geometry and the configuration of the MEG sensors (Oostendorp & van
Oosterom, 1989). Head geometry is used to approximate the distribution of
magnetic and electrical fields (Gramfort et al., 2010; Mosher et al., 1999).
Sensor properties includes locations, orientations and coil geometries (i.e.
magnetometer, axial and planar gradiometers). As MEG is mainly sensitive
to electric currents in the pyramidal cells (Hämäläinen et al., 1993), we use
forward models that constrain dipole currents along the normal direction of
cortical surfaces. The last two factors of individual differences, structure-
function mappings and noise levels, are what we can vary in the synthetic
datasets to examine the robustness of the M-CCA procedure. Structure-
function mappings refer to the possibility that even if subjects have the same
brain structures, different brain regions can be recruited to perform the same
task.

Generation of single-trial sensor data for each subject k can be described
as:

Sk = JkMkFk + wke.

Sk ∈ RT×306 represents single-trial data of length T recorded at 306 sen-
sors. JkMk ∈ RT×5124 represents the source data of the 5124 dipoles, with
Jk ∈ RT×N being N independently generated temporal components (i.e. un-
derlying brain dynamics), and Mk ∈ RN×5124 being a spatial mask consisting
of 1s and 0s that specifies if a dipole is involved in a particular temporal
component. Fk is the forward model for subject k that maps dipole data
to sensor data. e is the environmental noise added to the sensors, which is
generated at each time point t as

et ∼ N(0, Qe).

The noise covariance Qe is obtained from empty room recordings. wk mod-
els the individual variability in the noise level given that different subjects
are recorded during different recording sessions. Signal-to-noise ratio (SNR)
measures the power of brain signal JkMkFk divided by the power of sensor
noise wke.
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Further, we have Jk = [C,Uk] ∈ RT×N , where N = n+m. C ∈ RT×n rep-
resent n temporal components that are shared across all subjects, which are
set to be the top 10 CCA components obtained from the actual MEG data.
The goal of the M-CCA procedure is to recover dimensions in C. Uk ∈ RT×m

are m additional temporary components that are unique for each subject
k. They are each set as a sum of 10 sinusoidal waves with their frequencies
sampled randomly with the power spectrum of our MEG data. For each
column or component in Uk, the corresponding rows in Mk are constructed
by randomly selecting an "origin" dipole and the nearest N dipoles around
the origin dipole. This is done for each subject independently. For each col-
umn or component in C, the same process is used to construct rows in Mk

for a first "seed" subject. For the rest of the 17 subjects, origin dipoles are
uniformly sampled from a sphere with radius r centered at the origin dipole
of the seed subject. Similarly, the remaining dipoles for a particular compo-
nent in C are chosen as the nearest N neighbor dipoles from the origin dipole
for each subject. In other words, spatial mask Mk models underlying brain
patterns for a particular temporal component as a cluster of dipoles, with
N specifying the cluster size and r specifying the variability of their center
locations across subjects. However, it is also likely that the underlying brain
patterns for a particular temporal component are distributed rather than lo-
calized. To demonstrate that M-CCA is robust in both cases, in a separate
simulation, we select N dipoles uniformly from the total 5124 dipoles for each
temporal component without considering their coordinates.

Other than adding individual differences that create misalignment across
subjects, we also consider factors that add to the misalignment across tri-
als within a subject. Head movement blurs sensor measurement and in-
troduces variance in downstream analyses (Stolk et al., 2013; Uutela et al.,
2001). Therefore, a head movement compensation method was used as a pre-
processing step on our MEG dataset before applying M-CCA (Hämäläinen
& Ilmoniemi, 1994). In addition, we also investigate how head movement
impacts M-CCA performance. We simulate the effect of continuous head
movement by constructing a different Mk for each trial produced by a shift
r′ in the cluster centers. Shifted position in source generation mimics the
effect of having a spatially fixed array but with shifted head positions.

To summarize, in the synthetic dataset, we take into account the indi-
vidual differences in head geometry and sensor configuration by using the
forward models obtained from experimental subjects (Fk). We model the
differences in structure-function mappings across subjects by modeling dif-
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ferent parts of brain across subjects that share the same brain dynamics (Mk)
and by adding an additional number of unique brain dynamics that are not
shared across subjects (Uk). Lastly, we add different noise levels during the
recording for different subjects (wk), and investigate the effect of continous
head movement (r′). In this process, we simulate multiple trials of sensor
data Sk for each subject k. After averaging over these trials, sensor data is
used as input to the M-CCA procedure.

3. Results

3.1. Synthetic Dataset

In this section, we evaluate the robustness of M-CCA against different amount
of individual differences and noise levels. We measure the performance of
subject alignment by how well obtained CCA components correlate across
subjects. The M-CCA procedure described earlier (Figure 1) is applied to
the simulated sensor data Sk simultaneously for all subjects k = 1, 2, . . . , 18.
To test for overfitting, M-CCA is applied to half of the data (even trials for
each subject) as the training data to obtain the projection weights Hk for
each subject k. The same projection weights are then applied to the other
half of the data (odd trials for each subject) as the testing data. Inter-subject
correlations in the testing data reflect how well the CCA components truly
capture the underlying data.

We generate 100 trials for each subject (50 trials as training data and
50 trials as testing data)5, and simulate a two-condition experiment (T =
200) with 100 samples per condition6. Signal-to-noise ratio (SNR) is set as
−10 dB, which is conservative compared to typical values ( i.e. around 0 dB)
approximated for real MEG datasets (Hämäläinen & Hari, 2002). for all
subjects. Mk selects a cluster of dipoles for each temporal component in Jk,
with the size of the cluster N set to be 200, and the variation of the cluster
centers across subjects r set to be 0.01m. The shared temporal components
C used for the simulation are set to be the top 10 CCA components obtained
from the actual MEG data (n = 10). 15 CCA components are obtained in

5It is comparable to 54.7 trials per condition per subject in the real MEG dataset.
6There are 16 experimental conditions available in the real MEG dataset, but here we

simulate a more general case with only two experimental conditions.
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Figure 2: Averaged inter-subject correlations for each of the 15 CCA components
while selection a cluster of dipoles of size N (a) or randomly select N dipoles (b);
Inter-subject correlations averaged over the first 10 CCA components while increas-
ing the number of dipoles N (c) or increasing the variation of cluster localization
across subjects r (d). Whenever not specified, T = 200. SNR = −10 dB. n = 10.
m = 0. s = 306. N = 200. r = 0.01. r′ = 0.01. λ = 0. Each data point was
averaged over 10 simulations.

the simulation.
Figure 2a shows that reasonable inter-subject correlations can be recov-

ered up to the 10th CCA component. There is a drop in inter-subject correla-
tions beyond 10 CCA components, which reflects the fact that there are only
10 underlying common sources in C simulated in the first place. Addition-
ally, the pattern of inter-subject correlations generalizes to testing data only
up to the 10th CCA component. Averaging inter-subject correlations over
the top 10 CCA components (0.71), we confirmed that subject data is better
aligned after the M-CCA step than before (0.34 over 306 sensors, and 0.26
over the top 10 PCA components). The low correspondence in PCA dimen-
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Figure 3: Inter-subject correlations averaged over the first 10 CCA components
while increasing levels of SNR (a), the range of head movement 2r′ (b), the number
of individual brain sources m (c), or when SNR = −20 dB the amount of regular-
ization λ (d). Two cluster of scattered points (red) represents simulations with
individual differences introduced in SNR level with µ = -30 dB and 10 dB for each
cluster and with STD = 1dB, 2 dB, . . . , 10 dB for each data point within each clus-
ter. Whenever not specified, T = 200. SNR = −10 dB for all 18 subjects. n = 10.
m = 0. s = 306. N = 200. r = 0.01. r′ = 0. λ = 0. Each data point was averaged
over 10 simulations.

sions across subjects is expected, given the individual differences introduced
in the simulations. The obtained CCAs are dimensions over which subjects
re-align, and we can evaluate the source recovery by how well shared tempo-
ral components C can be expressed as a linear combination of the obtained
CCAs. Y represents the obtained CCA components. A least-squares solution
to Q is obtained from the system of equations Y Q = C, where Q transforms
the obtained CCA components Y averaged across half of the subjects to the
original common sources C (the other half Y ′ is used to test for overfitting).
The correlation matrix between Y ′Q and C is calculated, with the closest
correspondence for each of the 10 components in C being the component
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in Y ′Q with the largest absolute correlation. The mean of these absolute
correlations is 0.9791.

Next, we examine how varying different factors can have an impact on
the M-CCA performance:
Brain patterns (N, r) We examine if the M-CCA performance is affected
by the pattern of dipoles (Mk) that elicits a particular temporal component
in Jk. Figure 2a selects a cluster of dipoles for each temporal component,
with the size of the cluster determined by N and variation of the center of
the cluster across subjects determined by radius r. We observe that, if we
instead select N dipoles randomly across the brain (Figure 2b), the inter-
subject correlations for the top 10 CCA components give similar but slightly
better results than those in Figure 2a. This suggests that M-CCA is able to
realign the subject data, whether the underlying brain patterns for generat-
ing the common dimensions C are localized (selecting a cluster of N dipoles)
or distributed (randomly selecting N dipoles). For the convenience of better
modeling regularity in brain sources, we continue the rest of the simulations
assuming that the underlying brain patterns are clusters of dipoles. Next, we
examine if the size of the cluster N or the radius r has an impact on M-CCA
performance. With the rest of the parameters fixed, there is no change in the
obtained inter-subject correlations varying either N (Figure 2c) or r (Figure
2c). To summarize, we have demonstrated that M-CCA performance is ro-
bust to different types of underlying brain patterns that elicit the temporal
dynamics shared across subjects.
Signal-to-noise ratio (wk) We vary the levels of SNR while fixing the rest
of the parameters (Figure 3a). As SNR increases, the averaged inter-subject
correlations of the first 10 CCA components also increases. The SNR thresh-
old beyond which CCA components can be reasonably recovered falls into the
range −30 dB to −10 dB. Until now, we have assumed that all subjects have
the same SNR level. However, in reality, subjects are recorded during differ-
ent experimental sessions with different noise conditions. Next, we examine
if the variation in SNR level across subjects impacts M-CCA performance.
We assume that SNR across subjects are sampled from a normal distribution.
We consider two scenarios (two clusters of 10 points in Figure 3a). One is
a low-SNR scenario where the mean of SNR across subjects is −30 dB and
standard deviation ranges from 1 dB, 2 dB, . . . , 10 dB. The other represents
a high-SNR scenario where the mean of SNR across subjects is 10 dB with
standard deviation ranges from 1 dB, 2 dB, . . . , 10 dB. The M-CCA perfor-
mance is plotted in the figure against the inter-subject correlations obtained
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without introducing individual differences in SNR level. Interestingly, the
scattered points are clustered close together irregardless of the variation in
standard deviation. It is the mean of the subject SNRs but not their varia-
tion that matters. This is the case even when the SNR mean is -30dB, where
SNR from some of the subjects should fall below −30 dB given a standard
deviation of 10dB.
Head Movement (r′) We generate continuous head movement across trials
by introducing shifts in source generation, and examine how it can affect M-
CCA performance. In particular, we vary the radius of a sphere r′ in which
the head movement can uniformly occur (2r′ as the absolute range of such
movement in distance). Figure 3b plots averaged inter-subject correlations
while increasing 2r′. M-CCA performance over the testing data has reason-
able inter-subject correlations up to around 1–2cm, which is comparable to
challenging cases in children recordings with 0.03cm to 2.6cm as the mean
shift in sensor locations (Wehner et al., 2008).
Addition of unique temporal components (Uk) All subjects share the
same dimensions C in the common representational space. In addition to the
shared dimensions, we vary the number of additional temporal dimensions m
that are generated uniquely for each subject. Figure 3c shows that addition
of unique temporal components for each subject decreases the M-CCA per-
formance. But this decrease is gradual and the inter-subject correlations are
reasonable up to adding 50 components. These temporal components Uk are
task-related brain dynamics that are locked to the stimulus across all trials
in the same way as C. Despite the existence of such consistency, M-CCA is
designed to recover only the common dimensions across subjects.
Addition of regularization (λ) The synthetic data considers the case
where subjects share similar weight maps. Under this assumption, we test
if adding regularization to M-CCA improves its performance. In particular,
we are interested in the situations where data has low signal-to-noise ratio
(SNR = −20dB) where M-CCA may have difficulty recovering unique weight
maps. In Figure 3d, over the testing data, averaged inter-subject correlations
increases first over the range of 0–0.1 before it starts to decrease. Putting
some emphasis to consider the similarity between sensor weight maps helps
improve the inter-subject correlations of the resulted CCA components.
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3.2. MEG Dataset

3.2.1. Application of M-CCA
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Figure 4: Averaged inter-subject correlations of the first 20 CCA components over
training data (solid) and testing data (dashed) for the MEG dataset.
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Figure 5: The first 10 CCA components over the first 100 samples (1 sec) averaged across
all 18 subjects, with the first 50 stimulus-locked and the last 50 response-locked (separated
by the red dashed line) over the training data (blue) and testing data (magenta)

The M-CCA procedure described earlier (Figure 1) is applied to the MEG
dataset. M-CCA is applied to the training data to obtain the projection
weights Hk for each subject k. Inter-subject correlations over the testing
data are evaluated. Using 50 PCA components retained from each subject
prior to M-CCA, Figure 4 shows the averaged inter-subject correlations for
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each of the first 20 CCA components over the training data (solid) and the
testing data (dashed). The first 10 CCA components have reasonable inter-
subject correlations, which also generalize well over the testing data. It is
reasonable to retain the first 10 CCA components for downstream analysis.
In practice, there is no ground truth concerning how many dimensions there
are in the common representation space. One option is to observe from which
component inter-subject correlations fail to generalize to testing data. We
can see, in Figure 4, that the obtained CCA components generalize well from
the training data to the testing data up to around 10 CCA components. The
other option is to decide a threshold of inter-subject correlations over testing
data (e.g. 0.4). M-CCA ranks the obtained CCA components in terms of their
importance by the inter-subject correlations, as we can observe a decreasing
trend as the index of CCA component increases in Figure 4. Deciding such a
threshold can be as ambiguous as deciding the amount of variance of data to
keep when it comes to retaining a certain number of PCA components, which
is also highly dependent on the kind of downstream analysis being carried
out. If the downstream analysis is very sensitive to noise, it is advised not
to include too many CCA dimensions, as subjects do not align very well in
the later dimensions. If the downstream analysis is not sensitive to noise,
including more CCA dimensions is useful as it keeps more information from
the data.

Figure 5 plots the first 10 CCA components over the 100 samples (the
first 50 are stimulus-locked, and the last 50 are response-locked) for one
condition. There is a considerable match between the CCA components
over the training data (blue) and the testing data (magenta). Only task-
relevant neural patterns that are locked to the stimulus/response and occur
consistently across multiple trials will give similar temporal patterns over
the training data and the testing data during the trial-averaging process.
Therefore, it is unlikely that the obtained CCA components over external
interference in the environment will generalize to the testing data. To further
test this, we applied M-CCA to the empty room data prior to the recording
of each subject7. High inter-subject correlations averaged over the first 10
CCA components over the training data (0.99) do not generalize over the
testing data (0.07), suggesting that the top CCA components obtained in

7Non-overlapping segments of data of 100 samples are taken as trials when applying
M-CCA. On average there are 272 trials available in the empty room data per subject.
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our MEG dataset do not correspond to external interference.
The purpose of applying PCA prior to M-CCA is to reduce dimensional-

ity and subject-specific noise. If M-CCA is applied directly to sensors, the
resulting inter-subject correlation averaged over the first 10 CCA compo-
nents is 0.45 for the testing data, compared to 0.59 when M-CCA is applied
to 50 PCA components. Therefore, application of PCA prior to M-CCA
is useful to avoid overfitting. Retaining too many PCA components may
cause M-CCA to overfit, thus decreasing the inter-subject correlations, while
retaining too few PCA components may lose important information. Con-
sistent with this intuition, inter-subject correlations over the testing data
first increases, then it plateaus at roughly 50–90 PCA components before
decreasing. Therefore, we retained 50 PCA components prior to the M-CCA
procedure over this particular MEG dataset. Using the same procedure to
evaluate inter-subject correlations, the optimal number of PCA components
to retain can be decided in the same way over other datasets.

3.2.2. Evaluation by Inter-subject Classification

To further evaluate subject alignment using M-CCA, we compare how well
we could use the transformed data to classify different experimental con-
ditions in inter-subject classification and intra-subject classification.
Inter-subject classification classifies different experimental conditions of the
data from one subject given the data from other subjects, whereas intra-
subject classification classifies different experimental conditions of the data
from one subject given the data of the same subject. In the case when all
subjects perform the task in the same way, and that data is perfectly aligned
across subjects, inter-subject and intra-subject classification would yield the
same classification results. Therefore, comparing inter-subject classification
performance with intra-subject classification performance gives us a sense
for how good subject alignment is across different methods. It is worth not-
ing that classification accuracy also depends on intrinsic properties of the
experimental condition itself: how distinct neural signals are across two dif-
ferent conditions, and when they are distinct. We can only meaningfully
compare different classifiers/methods during the time windows where there
exist distinct neural signals to classify.

We compare inter-subject classification using M-CCA with three other al-
ternatives. The first alternative is intra-subject classification using PCA on
the subjects’ sensor data, which is similar to the method used in Borst et al.
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Figure 6: Intra-subject classification results of fan condition over PCA components
of sensor data (red). Inter-subject classification results of fan condition over PCA
components of sensor data (magenta), CCA components (blue), and PCA compo-
nents of ROIs (red). Times on the x axis are relative to the stimulus (left) or the
response (right). SEMs are shown in shaded error bars with n = 18.

(2016). This method forgoes the challenge of finding a correspondence across
subjects. Second, we consider inter-subject classification using PCA on the
subjects’ sensor data. Third, we consider inter-subject classification using
PCA performed on source data, which has been localized using MNE and
aligned based on the subjects’ anatomy. For each classification, we perform
M-CCA on 100 time points for each combination of conditions excluding the
condition to classify (i.e. 800 × 306 matrices instead of the 1600 × 306 ma-
trices in Figure 1). Averaging over the dimension to be classified in M-CCA
makes sure that the obtained CCA dimensions are only for maximizing the
alignment across subjects, but have not learned any specific representations
about the condition to classify. Classification of fan and word length are
considered in the evaluation8.

Figure 6 and 7 show the intra-subject classification accuracy over 20 PCA
components of sensor data (intraPCA: red), the inter-subject classification
accuracy over 20 PCA components of the sensor data (interPCA: magenta),

8Probe type condition is not included due to inferior intra-subject classification per-
formance. Trials responded by left hand and right hand are so different that they have to
be distinguished in the CCA step in order to have reasonable functional alignment. As a
result, left and right hand condition cannot be taken as a condition to classify.
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Figure 7: Intra-subject classification results of word length condition over PCA com-
ponents of sensor data (red). Inter-subject classification results of word length con-
dition over PCA components of sensor data (magenta), CCA components (blue),
and PCA components of ROIs (green). Times on the x axis are relative to the
stimulus (left) or the response (right). SEMs are shown in shaded error bars with
n = 18.

the inter-subject classification accuracy over 20 CCA components (interCCA:
blue), and the inter-subject classification accuracy over 20 PCA components
of the source data (interROI: green) 9. Linear discriminant analysis is used for
classifying data averaged over a sliding window of 10 samples, over instances
each averaged over 10 trials10. In both Figure 6 and 7, application of M-CCA
improves inter-subject classification. In fan condition (Figure 6), using CCA
components has comparable classification accuracy to that of intra-subject
classification, both over the stimulus-locked data and the response-locked
data. Inter-subject classification accuracy using CCA components is also
consistently superior to that of PCA components over the sensor data or
source data. In the stimulus locked data, accuracy is above chance only after
350ms when encoding of the words has been completed. In the response-
locked data, accuracy is above chance throughout but reaches a peak about
200ms before response generation. In word length condition (Figure 7), the

9Classification performance does not improve further adding more components beyond
20 for both PCA components over sensors/ROIs and CCA components.

10None of the classifiers have satisfactory performance over single trials, thus an effective
comparison among the classifiers is not possible.
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period of high classifiability is early in the stimulus-locked data, during which
time inter-subject classification using CCA components performs better than
using PCA components over the sensor data or source data. Classification
performance over the response locked data is low, given that neural signal
for viewing a short word or a long word is most distinguishable during the
period of time the word is being encoded (Borst et al., 2013).

3.2.3. Regularization
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Figure 8: Inter-subject classification accuracies of fan condition over selected time
windows of response-locked data with increasing λ values. Each curve represents
classification accuracy in a 100 ms time window centered around different times
(e.g. the line marked as −100 ms refers to the inter-subject classification results
during the window −150 to −50 ms relative to the response timing).

A regularization term in the M-CCA algorithm incorporates spatial sen-
sor information by assuming similar projection weights across different sub-
jects. Increasing λ corresponds to putting more emphasis on obtaining simi-
lar weight maps, compared with obtaining more correlated CCA components
across subjects. Regularization has the potential to further improve subject
alignment. We evaluate this by examining the performance of inter-subject
classification when λ is increasing. Focusing on the most classifiable period,
Figure 8 shows the effect of the λ on inter-subject classification of fan con-
dition during response-locked period. Each curve represents classification
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Figure 9: Projection weights from sensors to the first CCA component for the first
five subjects with different degrees of regularization (λ = 0, 0.2, 0.4, 0.6, 0.8).

accuracy in a 100ms time window centered around different times (e.g. the
line marked as −100ms refers to the inter-subject classification results dur-
ing the window −150 to −50ms ). On each curve, λ = 0 corresponds to the
same classification performance using CCA components as in Figure 6. With
increasing regularization, accuracy does not decrease right away and shows
a slight improvement for small λ values.

The best λ value is one that is as large as possible, but does not decrease
the classification accuracy much. Large λ values give rise to more inter-
pretable sensor weight maps. From Figure 8 we can tell that the best range
of λ values is around 0.2–0.4. Figure 9 shows the sensor weights that map the
sensor data of the first five subjects to the first CCA component. Different
columns correspond to different λ values ranging from 0–0.8. With increas-
ing regularization, the change across five columns within each row/subject
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is minor. The difference lies in the effect of regularization on across-subject
consistency of weight maps. In particular, as we move from left columns to
right columns, projection weight maps across subjects become more similar.
Other than the regularity of increased across-subject consistency of weight
maps (which is directly imposed in the M-CCA procedure), we also observe
regularity in the patterns of projection weight maps, despite the lack of any
such guarantee from the regularization method itself. In particular, the sen-
sors with higher weight values become more concentrated with increasing
regularization, and they emphasize activity in symmetric lateral frontal sen-
sors. This demonstrates that, when there are multiple solutions of weight
maps at the same CCA dimension, the additional constraint in the regular-
ization procedure may provide the most plausible and interpretable weight
maps.

4. Discussion
We evaluated M-CCA as a method for pooling MEG data from different
subjects together. It successfully produced dimensions in a common repre-
sentational space over which brain activities from different subjects were well
correlated, the patterns of which also generalized well over the unseen half
of the data.

Subject alignment was evaluated in an inter-subject classification task,
where different conditions of the data in one subject were classified based
on a classifier trained on the rest of the subjects. Inter-subject classification
performance using M-CCA was close to that of intra-subject classification
performance over sensor data, supporting the conclusion that M-CCA suc-
ceeds in finding meaningful common dimensions. Inter-subject classification
based directly on sensors never did much better than chance even though
intra-subject classification based on sensors did well. This is in accordance
with our knowledge that sensors do not align identically across subjects.
Inter-subject classification based on source activity also performed poorly. It
is likely that the quality of subject alignment using source localization was
compromised by the strong assumptions that went into solving the inverse
problem of source localization. Finding the inverse transformation from 306
sensors back to 5124 dipoles is a highly under-determined problem given
the high dimension in dipoles (Gramfort et al., 2014). However, M-CCA
is only interested in recovering the shared temporal dynamics, which are
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low-dimensional compared to the number of sensors. Therefore, M-CCA
eliminates the need to make strong assumptions used in solving the inverse
problem by directly producing the temporal dimensions that align across
subjects.

We also examined the performance of M-CCA in aligning data from mul-
tiple subjects on a synthetic dataset. Realistic forward models obtained from
actual experimental subjects were used to simulate different head geometries
and sensor configurations across subjects. Reasonable inter-subject correla-
tions were obtained when the SNR was larger than −10 dB, and when the
continuous trial-by-trial head movement took place within the range of 1–
2 cm. Other individual differences were introduced by 1) altering the spatial
adjacency of the brain sources that elicit a particular shared temporal dy-
namics, 2) adding additional unique brain sources for each subject in the task
and 3) varying the signal-to-noise ratio across subjects. M-CCA performance
was robust in the presence of different types of individual differences.

In addition to the standard M-CCA algorithm, we added a regularization
term to achieve better alignment and more interpretable results. M-CCA
involves finding a unique mapping for each subject from the sensors to the
common dimensions. The regularization term introduces a spatial constraint
to impose inter-subject similarity on these sensor weight maps. This adds
an appropriate constraint if the subject misalignment is the result of a small
amount of spatial shifts in either sensor positions or anatomical brain regions
from subject to subject. In a synthetic dataset where this kind of misalign-
ment was present, we showed that regularization improved the recovery of the
underlying sources. Over the real MEG dataset, adding the regularization
term also improved the inter-subject classification performance and produced
more consistent and interpretable sensor weight maps across subjects.

In this paper, we outlined the pipeline and evaluated the suitability of
using M-CCA to align subjects in MEG data. The eighteen subjects were
recorded in the same MEG environment. However, given the insensitivity of
M-CCA to variation of noise conditions across different recordings (demon-
strated in the synthetic dataset), M-CCA can be applied when subjects are
recorded under different sites or even under different MEG systems, pro-
vided that we can still assume the existence of a linear transformation from
source activity to sensor activity. In addition, the use of M-CCA in pool-
ing data from different subjects is not restricted to only one neural imag-
ing modality. We demonstrated in this study how M-CCA can be applied
to align subjects in MEG that comes in at a fine temporal grain size. In
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this aspect, EEG (Electroencephalogram) and ECoG (Electrocorticography)
datasets share very similar temporal characteristics as MEG, and can utilize
M-CCA to pool subjects together in the same way. Lastly, it is possible to
pool subjects recorded from different studies of the same task, as long as
there are corresponding time points across subjects and that brain responses
over that period of the time are considered consistent across subjects.
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