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Abstract

A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including

methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current

study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression

splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure

to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of

the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively

reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5

and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz)

and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time

domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need

for further studies examining possible spectral distortion from ICA-based correction procedures.
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1. Introduction

Ocular activity creates significant artifacts in the

electroencephalogram (EEG, Fisch, 1991). Epochs

contaminated by ocular artifacts can be manually

excised, but at the cost of intensive human labor

and substantial data loss. Alternatively, correction

procedures can distinguish brain electrical activity
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from ocular potentials, using regression-based or

component-based models (see Croft and Barry,

2000; Lins et al., 1993a,b). However, the current

literature lacks consensus about optimal correction

procedures. This is due, in part, to the inherent

challenges of developing and implementing accurate

models. In addition, few studies have directly com-

pared different methods for ocular artifact correction,

and existing studies have focused almost exclusively

on applications to event-related potential (ERP) re-

search (Lins et al., 1993a,b). The goal of the current

study was to use real and simulated EEG data to

compare multiple regression, principal component and

independent component methods of ocular artifact

correction, with a particular emphasis on implications

for spectral analyses of the EEG waveform.

Traditional ocular artifact correction procedures

use a regression-based approach (Elbert et al., 1985;

Gratton et al., 1983). Regression analyses are used

to compute propagation factors or transmission coef-

ficients in order to define the amplitude relation

between one or more electrooculogram (EOG) chan-

nels and each EEG channel. Correction involves

subtracting the estimated proportion of the EOG

from the EEG. One concern often raised about the

regression approach is bidirectional contamination. If

ocular potentials can contaminate EEG recordings,

then brain electrical activity can also contaminate the

EOG recordings. Therefore, subtracting a linear

combination of the recorded EOG from the EEG

may not only remove ocular artifacts but also

interesting cerebral activity. In order to reduce the

cerebral activity in the EOG, Lins et al. (1993b)

suggested low-pass filtering the EOG signal used to

compute regression coefficients. However, they rec-

ognized that low-pass filtering removes all high

frequency activity from the EOG signal, both of

cerebral and ocular origin. In the current paper, we

introduce a new filtering approach for regression-

based correction using Bayesian adaptive regression

splines (DiMatteo et al., 2001; Wallstrom et al.,

2002). This approach uses a locally defined nonlin-

ear filter to remove high frequency activity when the

amplitude fluctuations are small and retain high

frequency activity when the amplitude fluctuations

are large. Such adaptively filtered EOG essentially

isolates activity typically associated with ocular

artifacts and removes cerebral activity. The use of
such adaptive filtering prior to applying regression

correction may substantially reduce problems from

bidirectional contamination.

Another class of methods is based on decompos-

ing the EEG and EOG signals into spatial compo-

nents, identifying artifactual components and

reconstructing the EEG without the artifactual com-

ponents. For example, Lins et al. (1993b) and

Lagerlund et al. (1997) used principal component

analysis (PCA) to identify the artifactual compo-

nents. In addition, the dipole modeling technique of

Berg and Scherg (1991a,b, 1994) can use PCA to

compute topographies of eye activity. Statistically,

PCA decomposes the signals into uncorrelated, but

not necessarily independent, components that are

spatially orthogonal. More importantly for the pur-

pose of artifact correction, the PCA components

may be thought of as formed sequentially to max-

imize the remaining variance. In particular, the first

component is formed to have the largest variance,

and therefore easily isolates large amplitude ocular

artifacts. Such components can be identified and

selected automatically by comparing them with the

EOG signal, as we demonstrate in this paper. A

newer approach uses independent component analy-

sis (ICA), which was developed in the context of

blind source separation problems to form compo-

nents that are independent (Bell and Sejnowski,

1995; Comon, 1994; Jutten and Herault, 1991)

ICA has been applied to correct for ocular artifacts,

as well as artifacts generated by other sources (Jung

et al., 1998a,b, 2000; Vigário, 1997). Compared to

PCA, ICA removes the constraint of orthogonality

and forces components to be approximately inde-

pendent rather than simply uncorrelated. However,

the ICA components lack the important variance

maximization property possessed by PCA compo-

nents. In addition, ICA requires the user to manu-

ally select components for correction, thus creating

challenges for implementing automated correction

routines.

In the current study, we compare the performance

of regression-based and component-based correction

procedures on real and simulated EEG data of

varying epoch lengths. In particular, the correction

procedures we consider are two time-domain regres-

sion methods (i.e., with and without adaptive filter-

ing), automated and manual PCA, and ICA. Our
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simulation study allows us to verify the effect of the

adaptive filter on correction performance and ob-

serve the role of epoch length on the regression

methods and automated PCA. In addition, we quan-

tify the effects of each method on the spectral

parameters of the EEG. Our aim is to describe the

relative strengths and weaknesses of the different

methods for effectively removing ocular artifact,

without distorting the spectral parameters of the

EEG by correction.
2. Materials and methods

2.1. Subjects

Twelve adult subjects were selected from subjects

participating in a larger study of childhood-onset

depression (Miller et al. (2002)). Half of the subjects

had a history of childhood-onset depression and half

had no history of major psychopathology. Within

each diagnostic group, half of the subjects were

female. The ages of the subjects range from 21 to

35, with a mean of 28. There were no significant age

differences for the diagnostic and gender groups.

2.2. Recordings

EEG and EOG was recorded during three 60-s

resting baseline periods with the eyes open. EEG

data was acquired following standard guidelines

(Pivik et al. (1993)). An electrode cap (ElectroCap,

Eaton, OH) was positioned according to the expand-

ed 10–20 International System. Electrodes were

placed at sites F3, F4, AF3, AF4, F7, F8, FC1,

FC2, FC5, FC6, C3, C4, T7, T8, P3, P4, P7, P8, O1

and O2. Recordings were made using the vertex

(Cz) reference. The isolated-common ground was

AFz. The EOG was recorded using a bipolar refer-

ence and six-mm tin electrodes. Electrodes were

placed above and below the right eye to record the

vertical EOG and on the outer canthi to record the

horizontal EOG. Scalp electrode impedances were

below 10 kV throughout the session. Data were

collected with equipment and software from the

James Long (Caroga Lake, NY). The bioamplifier

was set for band-pass filtering with half power

cutoff frequencies of 0.01 and 100 Hz (12 dB/octave
roll-off). The gain was 5000 for the EEG channels

and 2500 for the EOG channels. Data were digitized

at 512 Hz.

2.3. Simulation

In order to compare the correction procedures

described above, we simulated forty 60-s realizations

of EEG and EOG data. The simulation process for a

3-s realization is diagrammed in Fig. 1. For each

realization, we began by simulating 10 independent

potential sources, 8 cerebral, 1 horizontal ocular and 1

vertical ocular. We then created a random mixing

matrix to enable the construction of the observed and

true EEG and EOG channels.

To simulate a realization of a cerebral source, we

began by selecting a random observed EEG channel

for a randomly selected subject and randomly se-

lected baseline period. We call this the pre-source

EEG. We then simulated the EEG source by remov-

ing significant ocular artifacts from the pre-source

via regression upon the unfiltered EOG using a 60-s

epoch.

To simulate the ocular sources, we formed each

pre-source EOG by selecting the corresponding

EOG channel from a randomly selected subject

and randomly selected baseline period. The EOG

sources were then obtained by filtering the pre-

source EOG using free knot splines. The 10 sub-

jects, from which the EEG and EOG pre-sources

were taken, were selected randomly, without replace-

ment, from among the 12 subjects in the available

set of data. Since each channel of source data was

derived from a different subject, the 10 channels are

truly independent.

Note that, aside from the artifact removal, we have

used independent segments of observed EEG as

cerebral sources. While there is no guarantee that

the true cerebral sources resemble the potentials

recorded on the scalp, this use of the observed EEG

helps to ensure that the simulated scalp EEG resemble

real EEG.

The observed EEG and EOG data are simulated

by multiplying the simulated sources by a random

weight matrix. The simulated observed channels are

therefore linear combinations of the simulated cere-

bral and ocular sources. The EEG coefficient vectors

are formed by normalizing vectors of independent



Fig. 1. The simulation process, shown for a 3-s epoch. (a) Each pre-source channel originates from a different, randomly selected subject. The EEG

pre-sources were randomly selected 60-s realizations taken from randomly selected EEG channels. The EOG pre-sources were randomly selected

60-s realizations taken from the corresponding EOG channels. (b) Each EEG source was derived from the corresponding EEG pre-source by

applying an artifact correction procedure (REG-RAW). Each EOG source was derived from the corresponding EOG pre-source by applying the

adaptive filter. (c) The simulated EEG/EOG was obtained by multiplying the EEG/EOG sources by a random weight matrix. (d) To simulate the

EEG and EOG that would have been observed in the absence of artifacts, the EEG/EOG sources were multiplied by the same weight matrix,

modified by replacing the EEG source coefficients with zeroes. (e) The corrected EEGwas obtained by applying an artifact correction procedure to

the simulated EEG/EOG. This corrected EEG was then compared to the EEG/EOG simulated without artifacts given in (d).
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standard normal random variates. The EOG coeffi-

cient vectors require additional care. Since each EOG

is primarily a measure of ocular potentials, it is

important that each of the two ocular sources con-

tributes substantially to its respective observed EOG

channel. This suggests heavily weighting the contri-

bution from the corresponding ocular source. On the

other hand, the observed EOG should contain a

similar amount of noise as the observed EEG,

suggesting that there should still be considerable

non-ocular contributions. We therefore set the coef-

ficient of the corresponding ocular source to be 1.
The remaining coefficients are formed from indepen-

dent standard normal random variates, scaled so that

the squared norm of the remaining coefficients is

0.9. Therefore, for both EOG and EEG, the expected

squared coefficient of a cerebral source is 0.1.

To evaluate the performance of the correction

procedures, we need to create the true EEG that

corresponds to the simulated observed EEG. This

can be accomplished by multiplying the simulated

sources by the weight matrix formed above with

the cerebral source coefficients replaced with

zeroes.
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2.4. Artifact correction

In this section, we describe five methods for

ocular artifact correction. Two are based upon re-

gression analysis (REG-RAW and REGADAPT),

two upon principal components analysis (PCA-

MAN and PCA-AUTO) and one upon independent

components analysis (ICA-MAN). All of the correc-

tion procedures are applied to epochs whose lengths

may be less than that of the whole realization.

Within an epoch, each channel of EEG and EOG

is centered to have zero-mean before the correction

procedures are applied. Given the available data, the

EOG consists here of two bipolar referenced chan-

nels. Additional or alternative EOG channels could

be easily used with these methods.

Two of the above methods require manual guid-

ance, PCA-MAN and ICA-MAN. We only apply

these two methods to the entire realization. The

others, REG-RAW, REG-ADAPT and PCA-AUTO,

are automatic, which permits multiple application to

small epochs. For these, we used three epoch lengths:

60, 10 and 1 s. When the epoch length is smaller than

the realization, we use epochs that overlap by 50%.

The overlap of epochs allows the corrected epochs to

be combined into a single continuous corrected real-

ization (see Appendix A).

2.5. Regression-based approaches to correction

Two correction procedures based on regression in

the time domain were studied. Each procedure uses

the following linear model to approximate the rela-

tionship between the observed EOG, the observed

EEG and the true unobserved EEG, where by ‘true’

EEG, we mean the signal that would have been

recorded in the absence of ocular artifacts.

OBSiðtÞ ¼ a1iFðHEOGÞðtÞ þ a2iFðVEOGÞðtÞ

þ EEGiðtÞ;
where OBSi(t) denotes the observed EEG recording

from lead i at time t, HEOG(t) and VEOG(t) denote

the observed recordings at time t from the horizontal

and vertical EOG channels, respectively, and EEGi(t)

denotes the true unobserved EEG from lead i at time

t. In the above equation, F(�) denotes a procedure-

dependent filter.
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Multiple regression may be used to estimate a1i
and a2i. The estimated true EEG is then formed

according to

ˆEEGiðtÞ ¼ OBSiðtÞ � â1iFðHEOGÞðtÞ

� â2iFðVEOGÞðtÞ:

The correction procedure, REG-RAW, uses the

unfiltered EOG channels in the regression. The pro-

cedure, REG-ADAPT, adaptively filters the EOG

prior to correcting via regression. The adaptive filter

that we employ uses a free-knot cubic spline to

smooth each EOG realization. Cubic splines are

continuous piecewise cubic functions. The points at

which the functions meet are called knots. deBoor

(1978) provides a detailed treatment of splines. Fixed-

knot splines have the number of knots and their

locations fixed in advance. With free-knot splines,

the number of knots and their locations are estimated

from the data. To fit the splines, we use the Bayesian

formulation of DiMatteo et al. (2001) The advantage

to using free-knot splines rather than fixed-knot

splines is that the knots are placed adaptively where

needed in order to provide a good smooth of the data.

Specifically, knots should tend to be placed around

large amplitude artifacts and few knots should be

required in artifact-free regions. This adaptive feature

of free-knot splines permits filtering the EOG of high

frequency, small amplitude cerebral signals while

retaining high frequency, large amplitude artifacts.

Additional details can be found in Wallstrom et al.

(2002).

Fig. 2 contains an example of an adaptively filtered

vertical EOG channel using this method. It can be

seen that the essential features of the artifact are

transferred to the filtered EOG unadulterated while

the high frequency activity is filtered out.

2.6. Component-based approaches to correction

The notion that potential differences measured on

the scalp are attributable to a number of cerebral and

artifactual (non-cerebral) electrical sources is concep-

tually appealing. Component-based approaches to

artifact correction in EEG are based on estimating

the contributions from these sources to the observed

EEG. By identifying the estimated sources that cor-



Fig. 2. Adaptive filtering of a 2-s epoch of vertical EOG using free-

knot splines. The raw unfiltered EOG and the adaptively filtered

EOG are displayed.
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respond to artifacts, the effects of the artifacts can be

removed. In general, source components (or simply,

components) are linear combinations of the EEG and

EOG channels, formed to have particular properties.

Vectors of the coefficients give the spatial directions

of the components. While the relative contributions of

the channels to a component are meaningful, the

overall strength (i.e. scale) of a component cannot

be uniquely determined. The coefficient vectors are

typically normalized to have length 1 in order to

remove this indeterminacy. We may therefore think

of the coefficient vectors as defining a new set of

coordinate axes, and the components are simply the

projections of the data onto these axes.

To formalize, let p be the total number of EEG and

EOG channels used and n be the number of sample

time points in the epoch. The data can then be

represented by an n� p matrix X. We form a p� p

matrix W whose columns are the coefficient vectors

for the components. The components are then the

columns of the n� p matrix C =XW. After the forma-

tion of the components, those associated with artifacts

must then be identified. Previously, identification had

been performed manually by plotting the components

and selecting those that resemble artifacts. An auto-

mated method for identification of ocular artifactual

components is described below. After the artifactual

components have been identified, the effect of these
components may be removed easily as follows. Let

X̃ = C̃W� 1 where C̃ is formed by replacing the arti-

factual components with zero vectors. The columns of

X̃ contain the corrected EEG and EOG data.

PCA and ICA are two approaches to constructing

the matrix W. In PCA, each coefficient vector is

formed so that the corresponding component has the

largest sample variance, subject to the constraint that

the component is uncorrelated with each of the

preceding components. In particular, the first column

of W contains the coefficients for the linear combina-

tion of the channels with maximum sample variance.

The coefficient vectors constructed in this manner are

simply the normalized eigenvectors of the sample

covariance matrix, and as such, are necessarily or-

thogonal. In ICA, the coefficient vectors are formed

so that the corresponding components are approxi-

mately statistically independent. A variety of iterative

algorithms for ICA exist, including those by Bell and

Sejnowski (1995), Hyvärinen and Oja (1997) and Lee

et al. (1999). We used the fastICA algorithm of

Hyvärinen (1999), implemented in the fastICA pack-

age by Marchini et al. (2002).

The components formed by ICA and PCA differ

in three significant ways. First, the ICA components

are independent, not just uncorrelated. Hence, while

the PCA coefficient vectors depend only on second

order moments, the ICA coefficient vectors are

necessarily driven by higher order moments. The

assumption that the distinct cerebral and artifactual

source components are independent is appealing,

making ICA an attractive approach. Second, the

ICA coefficient vectors are not necessarily orthogo-

nal. A consequence of PCA is that the constructed

components lie on orthogonal axes. However, the

underlying electrical sources need not be spatially

orthogonal. Third, the PCA components are specif-

ically constructed to isolate sources of large vari-

ance. There is no reason to believe that the

underlying electric sources share this variance max-

imization property. For example, the underlying

sources may contribute equally to the total variance.

These considerations make ICA appear to be more

consistent with the assumptions of electric source

components and, as a result, ICA has received

widespread interest for use in artifact correction.

However, the variance maximization property of

PCA seems particularly desirable for the isolation



Table 1

Table of mean correction errors by method

Theta

band

Alpha

band

Beta

band

Time domain

(AV)

NO-CORR 4.93 0.65 0.25 25.20

REG-RAW-60 2.76 1.56 1.24 9.64

REG-RAW-01 2.39 1.43 1.03 20.14

REG-ADAPT-60 2.82 0.57 0.30 8.98

REG-ADAPT-01 2.30 0.44 0.25 16.06

PCA-MAN-60 1.58 1.72 1.60 9.85

PCA-AUTO-60 1.40 0.89 0.81 10.25

PCA-AUTO-10 1.21 0.65 0.64 11.43

PCA-AUTO-01 0.91 0.38 0.36 23.52

ICA-MAN-60 1.94 1.57 1.56 11.62

Each column displays the mean error for each of the nine correction

methods and for no correction. The first three columns use

frequency domain measures of error, specifically the mean absolute

error in terms of power within the theta (3.5–7.5 Hz), alpha (7.5–

12.5 Hz) and beta (12.5–19.5 Hz) bands. The fourth column uses a

time domain measure of error, specifically the mean square root of

the mean squared error.
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of common ocular artifacts, which generally appear

as large amplitude fluctuations. One purpose of the

current study is to compare the relative effectiveness

of ICA and PCA for ocular artifact correction.

The component-based procedures require the iden-

tification of artifactual components. Manual selection

of components is used in the procedures PCA-MAN

and ICA-MAN. In PCA-AUTO, the selection process

is automated as follows. Since we are concerned here

only with ocular artifacts and the EOG is a reliable

indicator of ocular movements, we select components

that are highly correlated with the observed EOG.

Specifically, each component is regressed upon the

two observed EOG channels and we identify compo-

nents as artifactual when the squared multiple corre-

lation coefficient (R2) exceeds a cutoff value. We

experimented with the value of the cutoff and found

that R2 = 0.95 was effective in identifying artifactual

components when using PCA.

This automatic selection method was not useful

for selecting components formed from ICA. The

effectiveness of the selection method relies on there

being only a few artifactual components of ocular

origin. This is because as the number of artifactual

components increases, the components tend to be

less correlated with the observed EOG channels, and

therefore more difficult to identify as artifactual.

Lowering the R2 cutoff would help, but it would

also increase the chance for removal of cerebral

sources. The components formed from PCA rarely

contain more than two artifactual components. On

the other hand, ICA often separates ocular activity

into multiple sources.

2.7. Data quantification

To evaluate the artifact correction procedures we

investigated errors in both the time and frequency

domains. In the time domain we calculated, for each

channel, the mean squared error between the true EEG

and the corrected EEG. When overlapping epochs

were used, the corrected epochs were first aligned to

create a single continuous corrected realization.

In the frequency domain, for each channel we

estimate power density (in dB) for three frequency

bands, theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz) and

beta (12.5–19.5 Hz). Specifically, the EEG was

average referenced and power was estimated using a
Hanning window taper on 1-s epochs with 50%

overlap. For each epoch and frequency band, power

density was formed by averaging the power estimates

for frequencies within the band. Average power den-

sity was then computed by averaging the power

density over all overlapping epochs and converting

to decibels. For each correction method, we computed

power density errors for each channel and frequency

band.

Log-transformed correction errors were analyzed

using a mixed model that accounted for dependencies

imposed by the experimental design for the simula-

tion. A separate analysis was performed for each

measure of error. Reported significance levels were

computed upon Tukey’s HSD procedure, which

accounts for multiple comparisons.
3. Results

3.1. Simulation results

The time and frequency domain errors are summa-

rized in Table 1. The main findings are: adaptive EOG

filtering reduces alpha and beta band errors, short

epochs reduce frequency domain errors but enlarge

time domain errors, and the component-based meth-

ods generally yield smaller theta band errors. Overall,
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the methods and epoch lengths with low error rates are

REG-ADAPT with short and long epochs, and PCA-

AUTO with short epochs, depending upon the EEG

feature of interest.

There is little artifact in the beta band, 12.5–19.5

Hz, as indicated by the low mean absolute error when

no correction is performed. Not correcting has the

lowest mean absolute error among all of the methods

(each p < 0.001). Not correcting excluded, REG-

ADAPT using 1- and 60-s epochs, and PCA-AUTO

using 1-s epochs perform the best. Each of these three

methods has lower mean error than each of the remain-

ing methods (each p < 0.001), and there is no difference

among these three methods (each p>0.750).

In the alpha band, 7.5–12.5 Hz, not correcting and

PCA-AUTO using 1-s epochs perform the best, with no

difference between the two methods ( p>0.999). These
Fig. 3. Shown are the true signal (1), the observed signal (2) and four cor

epoch (4), REG-ADAPT using a 60-s epoch (5) and REG-ADAPT using
two methods each has lower mean error than the

remaining methods (for comparison to REG-ADAPT

using 1-s epochs, p = 0.005 and p= 0.032, respectively;

for all other methods, each p < 0.001). Excluding not

correcting and PCA-AUTO using 1-s epochs, REG-

ADAPT using 1-s epochs has the lowest mean error

among the remaining methods (each p< 0.001).

In the theta band, 3.5–7.5 Hz, PCA-AUTO using

1-s epochs has a lower mean error than all of the other

methods (each p < 0.001, except p = 0.015 for the

comparison to PCA-AUTO using 10-s epochs). Every

PCA and ICA method has a lower mean error than

each of the regression methods (each p < 0.001).

Every correction method has a lower mean error than

not correcting the EEG (each p < 0.001).

In the time domain, we observe that the largest

influence on the time domain error rates is the epoch
rections: REG-RAW using a 60-s epoch (3), REG-RAW using a 1-s

a 1-s epoch (6).
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length. REG-RAW, REG-ADAPT and PCA-AUTO

using 60-s epochs have lower mean error than their

respective counterparts using 1-s epochs (each

p < 0.001). Furthermore, all methods that used 60-s

epochs have lower mean error than not correcting the

EEG (each p < 0.001).

We now consider two examples from the simulation

study. The first example, shown in Figs. 3 and 4,

contrasts REG-RAW and REG-ADAPT using both

60- and 1-s epochs. The figures are based upon looking

at only the first 20 s of the 60-s epoch. In Fig. 3, we see

that all four methods do a fair to good job of removing

the artifacts. While the 1-s epoch versions remove the

individual blinks more completely than the 60-s epoch

versions, the 1-s versions fail to reconstruct the low

frequency temporal structure of the true EEG. This can

be most readily observed by looking at the period from

18 to 20 s, and also at the period of high frequency

activity between 6 and 8 s. The differences between
Fig. 4. The error in log power, expressed in decibels, is plotted against fre

epochs (b), REG-ADAPT using a 60-s epoch (c) and REG-ADAPT using
REG-RAW and REG-ADAPT are very difficult to

observe in Fig. 3. However, if we consider the errors

in the frequency domain, the differences are more

apparent. Fig. 4 displays the error in log power,

expressed in decibels, for the four correction methods.

Here, it can be seen that above say, 10 Hz, use of the

adaptive filter improves correction. The actual log

power estimates for all of the correction methods, the

true EEG, and no correction are displayed in Table 2.

The second example from the simulation study is

displayed in Fig. 5, with log power estimates provided

in Table 3. Displayed in Fig. 5, along with the true and

observed signal, are the corrections made using REG-

ADAPT with 1-s epochs, PCA-AUTO with 60-, 10-

and 1-s epochs, and ICA-MAN. It can be seen that

REG-ADAPT performs very well in the mid and high

(alpha and beta) frequency bands, but is unable to

reconstruct the low frequency character of the signal.

PCA-AUTO with 60- and 10-s epochs perform poorly
quency for REG-RAW using a 60-s epoch (a), REG-RAW using 1-s

1-s epochs (d).



Table 2

Table of log power estimates and time domain error by method for

the first simulation example

Theta

band

(dB)

Alpha

band

(dB)

Beta

band

(dB)

Time

domain

error (AV)

TRUTH � 124.25 � 118.87 � 127.67 –

NO-CORR � 113.12 � 118.35 � 127.61 65.36

REG-RAW-60 � 121.57 � 118.24 � 127.32 19.42

REG-RAW-01 � 121.94 � 119.93 � 126.99 18.92

REG-ADAPT-60 � 121.97 � 118.72 � 127.59 17.84

REG-ADAPT-01 � 122.29 � 118.56 � 127.46 16.94

PCA-MAN-60 � 122.73 � 118.44 � 127.47 9.32

PCA-AUTO-60 � 122.08 � 118.86 � 127.62 19.00

PCA-AUTO-10 � 122.16 � 118.85 � 127.61 18.84

PCA-AUTO-01 � 122.58 � 118.82 � 127.61 15.50

ICA-MAN-60 � 123.27 � 120.76 � 127.77 15.87

Values are given for the true unobservable signal, the observed

signal (i.e., no correction used), and each of the nine correction

methods. The first three columns give the estimated log power

within the theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz) and beta (12.5–

19.5 Hz) bands. The fourth column gives the square root of the

mean squared error. In this example, there is very little artifact in the

alpha and beta bands. With the possible exception of REG-RAW on

1-s epochs, all of the methods provide a good estimate of beta

power. With the exception of ICA-MAN, all of the methods

estimate alpha power well. None of the methods do well at

estimating theta band power, but ICA-MAN performed better than

the others.
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in the alpha and beta bands, but with 1-s epochs

performs quite well. On the other hand, with 1-s

epochs, the temporal structure is greatly distorted.

Finally, ICA-MAN can be seen to result in a corrected

signal with exaggerated theta, alpha and beta band

activity.

3.2. Results with real data

An example with real data is displayed in Figs. 6

and 7. The data are 60 s of 21-channel EEG collected

during a resting, eyes-open baseline condition. Two

EOG channels were simultaneously recorded. Correc-

tion was performed using the entire 60 s of 23-channel

data; however, only the first 10 s of 6 EEG and 2 EOG

channels are displayed. The major ocular artifacts in

the sample are a blink artifact in the first second, and

eye movement artifacts between the sixth and eighth

second marks.

The example demonstrates the performance of

REG-ADAPT and PCA-AUTO with 1-s epochs, and
ICA-MAN using a 60-s epoch on real data. All three

methods have removed the large amplitude changes

associated with the artifacts (Fig. 6). However, the

frequency domain characteristics of the ICA-corrected

EEG are inconsistent with the observed EEG. The

excessive high frequency power in the corrected F8

and AF4 channels can be observed in Fig. 6. Even the

F7 channel, which appears in Fig. 6 to not be similarly

affected, contains excessive power between 5 and

20 Hz (Fig. 7).
4. Discussion

4.1. Careful adaptive filtering improves correction

when using regression in the time domain

We have argued that the use of an appropriate

adaptive filter can improve correction when using a

time domain regression approach to EEG correction.

Adaptive filtering reduced the alpha band error rates by

63% and 69% when using 60- and 1-s epochs, respec-

tively, and reduced the beta band error rates by 76% for

both epoch lengths. It is important to emphasize,

however, that adaptive filtering cannot completely

remove the concern about bidirectional contamination.

Low frequency contamination remains a problem for

the regression approach. Adaptive filtering does sub-

stantially remove our concern about high frequency

contamination of the EEG by ocular sources.

4.2. Automatic component selection with PCA is

effective

With PCA, the automatic method of component

selection was quite successful. We used a squared

multiple correlation cutoff of R2 = 0.95. The cutoff

value may need to be adjusted depending on the epoch

length, the number of EEG and EOG channels, and the

nature of the EEG data. For the higher frequencies,

little correction is generally needed so a conservative

rule for the removal of components is not dangerous.

When an artifact has considerable low frequency pow-

er, PCA rarely has a difficult time separating out the

component and will therefore produce a large value of

R2 for that component. Hence, it is probably better to

err on the side of a large cutoff resulting in the

conservative removal of components.



Fig. 5. Shown are the true signal (1), the observed signal (2) and five corrections: REG-ADAPT using 1-s epochs (3), PCA-AUTO using a 60-s

epoch (4), PCA-AUTO using 10-s epochs (5), PCA-AUTO using 1-s epochs (6) and ICA-MAN using a 60-s epoch (7).
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Automatic selection with 60-s epochs was more

effective than manual selection with 60-s epochs.

Manual selection, as we performed it, was based on

visual comparisons between the EOG and the com-

ponents. The components deemed artifactual were

those that resembled the EOG in the time domain.

Frequency domain characteristics that would affect

the value of R2 may be difficult to see in the time

domain and easier to dismiss than time domain

characteristics. This suggests that the visual identifi-

cation of components should use both time and

frequency-domain displays.

4.3. Epoch length should be selected based upon the

quantities of interest

For both the regression-based and the component-

based correction procedures, it is assumed that
certain relationships among the EEG and EOG

channels and their cerebral and ocular sources are

both linear and stationary over the epoch. For the

regression approach without adaptive filtering, the

model implies that the relationships between each

EEG channel and the EOG channels are linear and

remain constant over the entire epoch. When adap-

tive filtering is used with regression, the statistical

model implies that the relationships between each

EEG channel and the ocular sources are linear and

remain constant throughout the epoch. The models

for the component-based procedures imply that the

relationships between each EEG and EOG channel

and the cerebral and ocular sources are linear and

constant over the epoch.

Our simulation study results showed that the

use of short epochs improved estimation of power

for the theta, alpha and beta bands, while wors-



Table 3

Table of log power estimates and time domain error by method for

the second simulation example

Theta

band

(dB)

Alpha

band

(dB)

Beta

band

(dB)

Time

domain

error (AV)

TRUTH � 129.31 � 129.48 � 134.92 –

NO-CORR � 117.71 � 127.59 � 133.91 66.84

REG-RAW-60 � 125.82 � 131.40 � 135.54 8.37

REG-RAW-01 � 126.59 � 131.58 � 135.67 14.08

REG-ADAPT-60 � 125.55 � 129.32 � 134.42 7.58

REG-ADAPT-01 � 126.10 � 129.43 � 134.39 10.08

PCA-MAN-60 � 134.61 � 135.37 � 139.33 7.19

PCA-AUTO-60 � 134.61 � 135.37 � 139.33 7.19

PCA-AUTO-10 � 131.05 � 135.01 � 139.33 11.45

PCA-AUTO-01 � 126.63 � 129.50 � 135.33 73.04

ICA-MAN-60 � 122.55 � 121.86 � 127.61 42.55

Values are given for the true unobservable signal, the observed

signal (i.e., no correction used), and each of the nine correction

methods. The first three columns give the estimated log power

within the theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz) and beta (12.5–

19.5 Hz) bands. The fourth column gives the square root of the

mean squared error. In this example, there is a non-negligible

amount of alpha and beta band artifact. In the alpha and beta bands,

REG-ADAPT provides the best estimates of power, followed by

PCA-AUTO on 1-s epochs and REG-RAW. PCA-MAN, PCA-

AUTO on 60- and 10-s epochs, and ICA-MAN give poor estimates

of alpha and beta power. For the theta band, none of the methods

give good estimates.
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ening estimation of time domain characteristics due

to the problem of re-attaching the corrected

epochs. The improvement throughout the frequency

bands of general interest strongly suggests that the

relationships are not both linear and stationary. In

effect, the use of a short epoch assumes that the

relationships are piecewise-linear and piecewise-

stationary throughout the realization. In much the

same way that a step function can approximate a

curve, the piecewise models may better approxi-

mate the true relationships among the channels and

sources.

Our simulation study found improvements from

the use of short epochs for both the regression-

based approaches and for the automatic PCA tech-

nique. The magnitudes of the improvements were

smaller for regression than for PCA. For regression,

use of a 1-s epoch rather than a 60-s epoch reduced

the mean absolute error for the theta, alpha and beta

bands by between 8% and 23%, depending on the

band and filtering. For automatic PCA, use of a 1-s
epoch reduced the mean absolute error by between

35% and 57%, depending on the band. This sug-

gests that the assumptions of linearity and statio-

narity over 1 min is less problematic for the

regression approaches than for component-based

procedures.

In some studies, however, it may be important to

assume that the relationships are stationary. If the

primary interest is in EEG that occurs simultaneously

with ocular activity, such as a startle response, the

assumption of stationarity is critical to the correction

of the EEG that coincides with the ocular activity.

For other experimental conditions, such as a resting

baseline or a non-visual oriented task, short epochs

should be used for correction before calculating

quantities based on frequencies over 3.5 Hz, such

as alpha band asymmetries.

4.4. Spectral distortions and ICA

We were disappointed by the performance of ICA

for artifact correction, both in our simulation study

and in investigations with real data. In addition to

the fastICA algorithm of Hyvärinen (1999), we also

experimented with the extended ICA algorithm of

Jung et al. (1998a) and implemented by Makeig et

al. (1998). The problem of spectral power overesti-

mation, as shown in Figs. 6 and 7, was more

common with extended ICA than with fastICA.

It may be that other ICA algorithm variants may

produce more successful artifact correction. At this

point we, are only left to conclude that the assump-

tion of independence of the ocular and cerebral

sources is not strong enough to isolate the ocular

sources well. The use of epochs substantially longer

than the 60-s epochs that we used may hold the key

to the success of ICA for artifact correction.

It worth emphasizing that this study only consid-

ered one application of ICA, and our conclusions

should not be taken as a general statement about the

performance of ICA. Future studies are needed to

further investigate the potential spectral distortions

induced by ICA.

4.5. Limitations and future directions

This study used two bipolar referenced EOG

channels. However, Elbert et al. (1985) suggest that



Fig. 6. The original data contained 60 s of 21 EEG and 2 EOG channels collected during a resting baseline condition. (a) Selected channels for

the first 10 s of the original data. (b) The corrected channels using REG-ADAPT-01 (b), AUTO-PCA-01 (c) and ICA-60 (d).
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at least three EOG channels are needed to correctly

differentiate artifact types. Future studies should

include a radial EOG channel to distinguish blinks
and vertical saccades. Furthermore, increasing the

number of simulated ocular sources may improve

the EEG simulations.



Fig. 7. The spectra of observed and corrected F7 channel using REG-ADAPT-01, AUTO-PCA-01 and ICA-60.
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Although we only examined adult data here, the

simulation results for the theta band suggest that

artifact correction may be more delicate for child

EEG, where peak alpha activity occurs around 7 Hz.

Future work should examine the implications of

artifact correction for spectral analyses of child

EEG data.
Appendix A. Reconciling overlapping signals

A consequence of using a method that operates

on small overlapping portions of an epoch is a need

to reconcile the corrected portions at the end. This

appendix describes the procedure we used. To sim-

plify the discussion, for now suppose that there are

two signals defined on overlapping epochs where

each signal was formed by applying a correction

method to the observed EEG channel. Let S1(t)

denote the first signal, defined for t0 < tV t2, and

S2(t) denote the second signal, defined for t1 < tV t3.

We are interested in reconciling S1(t) and S2(t) for

t1 < tV t2. As each of the correction methods dis-

cussed herein amount to subtracting a linear combi-

nation of the EEG and possibly filtered EOG

channels, the difference between S1 and S2 in the

overlap region is also a linear combination of the

EEG and possibly filtered EOG channels. While the

EEG and EOG are centered prior to correction on
each epoch, the channels need not have zero mean

on the overlap portion of the epoch. It follows that

in the overlap region, S1 and S2 are not mutually

centered. Therefore the reconciliation procedure that

we use contains two steps.

(i) Vertically shift S2 so that S1 and S2 have the

same center in the overlap region.

(ii) Form a single signal S such that in the overlap

region S is a weighted average of S1 and S2.

For step (i), we simply define S2*(t) = S2(t)�
m2 +m1, where m1 and m2 are the respective means

of S1 and S2 in the overlap region. For step (ii), let

w(x) be a continuous weight function defined for

0V xV 1 such that w(0) = 0 and w(1) = 1, and define

SðtÞ ¼

S1ðtÞ; t0 < tVt1

S1ðtÞ 1� w
t � t1

t2 � t1

� �� �
þ S2*ðtÞw

t � t1

t2 � t1

� �
; t1 < tVt2

S2*ðtÞ: t2 < tVt3

8>>>><
>>>>:

The weight function is continuous with w(0) = 0

and w(1) = 1 to ensure that discontinuities are not

introduced into S. We used w(x) = x as a simple and

obvious choice.

More generally, suppose we want to reconcile

signals S1,. . .,Sn where Sj(t) is defined for tj� 1 < tV
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tj + 1 and t0 < t1 < . . . < tn + 1. Then for j = 1,. . .,n let lj
denote the mean of Sj over the interval (tj� 1, tj] and let

hj denote the mean of Sj over the interval (tj, tj + 1].
Define S1*(t) = S1(t) and, for j = 2,. . .,n define Sj*(t) =

Sj(t)�Si = 2
j (li� hi� 1). Finally, the resulting signal is

given by
SðtÞ ¼

S1*ðtÞ; t0 < tVt1

Sj*ðtÞ 1� w
t � tj

tjþ1 � tj

� �� �
þ Sjþ1

* ðtÞw t � tj

tjþ1 � tj

� �
; tj < tVtjþ1; j ¼ 1; . . . ; n� 1

Sn*ðtÞ; tn < tVtnþ1

8>>>><
>>>>:
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