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SUMMARY

This article presents two methods of testing the hypothesis of equality of two functions H0 :f1(t)=f2(t)
for all t, in a generalized non-parametric regression framework using a recently developed generalized
non-parametric regression method called Bayesian adaptive regression splines (BARS). Of particular
interest is the special case of testing equality of two Poisson process intensity functions �1(t)= �2(t),
which arises frequently in neurophysiological applications. The �rst method uses Bayes factors, and
the second method uses a modi�ed Hotelling T 2 test. Both methods are applied to the analysis of
347 motor cortical neurons and, for certain choices of test criteria, the two methods lead to the same
conclusions for all but 7 neurons. A small simulation study of power indicates that the Bayes factor
can be somewhat more powerful in small samples. The T 2-type test should be useful in screening large
number of neurons for condition-related activity, while the Bayes factor will be especially helpful in
assessing evidence in favour of H0. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: Bayes factor; curve-�tting; functional data analysis; inhomogeneous Poisson process;
neuronal data analysis; non-parametric regression

1. INTRODUCTION

Bayesian adaptive regression splines (BARS) [1] is a generalized non-parametric regres-
sion method that is particularly good at �tting curves with irregular variation. DiMatteo
et al. showed that BARS could reduce mean squared error below other existing methods,
and this new technology has been used in a variety of applications in neurophysiology, imag-
ing, EEG analysis, and genetics [1–7]. Furthermore, BARS has been implemented in C, with
calling functions in R and S, in publically available software [8]. A common problem in
these curve-�tting scenarios is to determine whether two curves produced under two di�erent
but related conditions are the same. Formally, this involves a hypothesis test of the form
H0 :f1(t)=f2(t), for all t in some �nite interval, where t may represent time or it could
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be any explanatory variable to which the response is related. The purpose of this paper is to
de�ne and compare two methods of testing this hypothesis in conjunction with BARS.
We are especially interested in applying this new methodology in neurophysiological appli-

cations, where the problem becomes one of testing equality of two Poisson process intensity
functions �1(t) and �2(t). Neurophysiologists examine activity of individual neurons in vivo
in order to characterize their responsiveness either to some stimulus presented to the animal
or to some behaviour the animal is engaged in (such as moving its hand). Typically, many
neurons (often hundreds) are examined from a particular brain region during several months
of experimentation. The need for a test of H0 : �1(t)= �2(t) arises in two circumstances. First,
it may be important to establish that some neurons are not at all responsive to the stimulus or
task, so that H0 might hold in some cases. Second, even when H0 is not itself interesting, an
experimenter still may wish to eliminate from further consideration those neurons for which
the data cannot establish conclusively that the neurons are responsive. Thus, in this latter
case, a screening procedure of some kind is invoked. The methods we discuss here are useful
for both purposes.
There is a substantial literature on the general problem of testing equality of two functions,

focusing mainly on the special case of non-linear regression. A nice overview is provided
by Fan and Lin [9] and a more recent treatment is given by Neumeyer and Dette [10]. The
method of Fan and Lin is, in principle, quite general, but in the case of testing equality of
Poisson intensity functions would require pre-processing, and furthermore assumes equispaced
time points, which is not essential in our approach. An important observation, discussed by
Fan and Lin, is that tests based on large numbers of time points may not be very powerful.
Our use of BARS, however, drastically reduces the dimensionality of the problem by �tting
splines with a relatively small number of knots. After presenting the methodology we report
simulation results to substantiate the intuition that the methods we discuss should have good
power against smooth but relatively small departures from equality.
BARS uses data y1; : : : ; yp obtained at t= t1; : : : ; tp, with each Yj assumed to depend

probabilistically on f(tj) through the model

Yj ∼ p(yj|�j; �)
�j = f(tj)

(1)

with f being a spline having an unknown number of knots at unknown locations �1; : : : ; �k .
Model (1) includes a vector of nuisance parameters � to indicate generality. In the Pois-
son case, however, there are no nuisance parameters and in what follows we will, for con-
venience, drop � from our notation. Writing f(t) in terms of basis functions b�; h(t) as
f(t)=

∑
h b�; h(t)��; h the function evaluations f(t1); : : : ; f(tp) may be collected into a vec-

tor (f(t1); : : : ; f(tp))T =X���, where X� is the design matrix and �� is the coe�cient vector.
For a given knot set �=(�1; : : : ; �k) model (1) poses a relatively easy estimation problem; for
exponential-family responses (such as Poisson) it becomes a generalized linear model. The
hard part of the problem is determining the knot set �, and using the data to do so provides
the ability to �t a wide range of functions (as reviewed by Hansen and Kooperberg [11]). In
Section 2 we brie�y review the strategy used by BARS.
Now suppose we were to choose a particular knot set � and use it for both of the two

curve-�tting problems, namely; determining � and utilizing the data to do so. Then H0 could
be re-expressed as �1�=�

2
� and the likelihood ratio test could be applied to test H0 versus the
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alternative �1� �=�2�. Although this is, at �rst glance, an appealing possibility, it is not clear
how to carry out such a determination of a single knot set. Furthermore, using the likelihood
ratio for a single knot set would ignore the uncertainty due to knot set selection. To solve the
�rst problem we developed a version of BARS that �ts f1(t) and f2(t) together, under the
assumption that they share the same knot set. To circumvent the second problem we de�ned
a suitable Bayes factor for testing H0 against the same-knot-set alternative HA, which takes
account of the posterior distribution on �. Implementation details for this Bayes factor are
given in Section 3. While we have obtained very good results using the Bayes factor, it does
require both functions to use the same knot set (as would the likelihood ratio test) which may
be restrictive. One reason we are concerned about using the same knot set for both functions
is that in our recent study of methods for assessing variability among many curves we found
[2], somewhat surprisingly, that a random-coe�cient hierarchical model that assumed the same
knot sets among all curves did not perform as well as an alternative approach based on �tting
the curves separately. Therefore, in Section 4, we introduce our second procedure, which
begins with separate BARS �ts for f1(t) and f2(t) and produces a p-value based on an
analogue of Hotelling’s T 2 for testing equality of two multivariate Normal means.
Figure 1 displays data from 2 primary motor cortical neurons, each recorded under two

experimental conditions in a sequential reaching task [12]. These 2 neurons were selected
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Figure 1. Responses of 2 motor cortical neurons under repeating-mode and random-mode conditions.
BARS intensity functions (neuronal spikes=s) are overlaid on peristimulus time histograms. Horizontal
axes are experimental time (in milliseconds), with 0 corresponding to the time at which the mon-
key’s hand leaves the previous button and begins to move to the new button. Top left: Neuron 1 in
random-mode condition. Top right: Neuron 1 in repeating-mode condition. Bottom left: Neuron 2 in
random-mode condition. Bottom right: Neuron 2 in repeating-mode condition. It appears from inspection

that neuron 1 responds similarly in the two conditions while neuron 2 responds di�erently.
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from 347 neurons examined in this experiment. Overlaid on the data histograms are the BARS
�ts. According to our methods, one neuron clearly responds di�erently to the two experimental
conditions, while for the other neuron the data are inconclusive. In Section 5 we discuss the
details and we also summarize our comparison of the two methods across all 347 neurons.
In Section 6 we present a small simulation study of the two methods.

2. BACKGROUND ON BARS

BARS is an MCMC-based algorithm that samples from a suitable approximate joint posterior
distribution on the knot set � and number of knots k. This, in turn, produces samples from the
posterior on the space of splines. In practice, cubic splines and the natural spline basis have
been used in most applications. BARS could be viewed as a powerful engine for searching
for an ‘optimal’ knot set, but because it generates a posterior on the space of splines it
produces an improved spline estimate based on model averaging [13] and it also provides
uncertainty assessments. Importantly, the uncertainty assessment includes uncertainty about
knot placement.
The standard output of BARS is a sample from the joint posterior of (�; k) but, for

notational convenience, in most of our presentation we leave k implicit and discuss the pos-
terior on � (k is the length of the vector �). Details of implementation are described in
Reference [8]. In brief, key features of the MCMC implementation of BARS include (i) a
reversible-jump chain on � after integrating the marginal density

p(y|�)=
∫
p(y|��; �)�(��|�) d�� (2)

(where y=(y1; : : : ; yp)), the integration being performed exactly for Normal data and approx-
imately, by Laplace’s method, otherwise, (ii) continuous proposals for �, and (iii) a locality
heuristic for the proposals that attempts to place potential new knots near existing knots.
BARS explores the space of generalized regression models de�ned by � and k and the prior
on k can, in some cases, control the algorithm in important ways [1, 4, 11].
The essential idea of using reversible-jump MCMC to select knots was suggested by

Denison et al. [14], following the lead of Green [15], who discussed the special case of
change-point problems. However, aspects of BARS outlined in (i)–(iii) distinguish it from
(and improve upon) the method of Denison et al. (see Reference [14]). The �rst implementa-
tion feature, item (i) above, introduces an analytical step within the MCMC partly to simplify
the problem of satisfying detailed balance and partly for the sake of MCMC e�ciency (which
is generally increased when parameters are integrated; see Reference [16]). In addition, BARS
takes advantage of the high accuracy of Laplace’s method in this context. In doing so the
‘unit-information’ prior discussed by Kass and Wasserman [17] and Pauler [18] has been
used (as � in (2)), and this gives the interpretation that the algorithm is essentially using the
Bayes information criterion (BIC) to de�ne a Markov chain on the knot sets. We return to
the unit-information prior and BIC below. The importance of performing integral (2), at least
approximately, has been stressed by Kass and Wallstrom [4]. Continuous proposals and the
locality heuristic (items (ii) and (iii)) together allow knots to be placed close to one another,
which is advantageous when there is a sudden jump in the function. It might be thought that
non-di�erentiable curves would require placement of multiple knots at the same location, but

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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DiMatteo et al. found (and showed in their paper) that it was unnecessary to modify BARS
in this way: the algorithm places knots essentially on top of each other when necessary.

3. BAYES FACTOR

In conjunction with (1) we consider the null hypothesis H0 :�1�=�
2
� versus the alterna-

tive HA :�1� �=�2�, but the knot set � remains unknown. We wish to test H0 based on data
y1 = (y11 ; : : : ; y

1
p1) and y

2 = (y21 ; : : : ; y
2
p2). The Bayes factor is deceptively easy to write. It is

given by

B=
∫
p(y1|��; �)p(y2|��; �)�(��; �) d� d�∫

p(y1|�1�; �)p(y2|�2�; �)�(�1�; �2�; �) d�1� d�2� d�

There are two issues in implementing this Bayesian hypothesis test: First, BARS must be
modi�ed so that the same knots are used for both curves. Second, B must be computed from
the posterior sample produced by BARS. We discuss the latter computation in the next two
subsections, then return to modi�cation of BARS.

3.1. Computation of B via posterior simulation

BARS produces a sample from the joint posterior on � and k. The key step that allows the
computation to proceed is to assume the two hypotheses are equally likely, rewrite the Bayes
factor in terms of the posterior odds

B=
P(H0|y1; y2)
1−P(H0|y1; y2)

and then write the posterior probability P(H0|y1; y2) in the form

P(H0|y1; y2)=
∫
P(�1�=�

2
�|�; y1; y2)p(�|y1; y2) d�

This says that the posterior probability of H0 may be obtained as the posterior expectation

P(H0|y1; y2)=E�|y1 ; y2 [P(�1�=�2�|�; y1; y2)] (3)

Thus, from the posterior sample of knot sets �(g), for g=1; : : : ; G we compute

P(H0|y1; y2)≈
∑

g P(�
1
�=�

2
�|�(g); y1; y2)
G

(4)

In other words, we are able to compute the model-averaged posterior probability as an
average of model-�xed posterior probabilities. Equation (4) is valuable because, as we show
in the next subsection, it is straightforward to compute P(�1�=�

2
�|�(g); y1; y2), approximately,

via BIC.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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3.2. BIC and posterior probability

Conditionally on the knot set �, H0 :�1�=�
2
� de�nes a model nested within the alternative

HA. The theory in Reference [17] therefore applies and BIC may be used to approximate the
posterior probability P(�1�=�

2
�|�(g); y1; y2).

The Bayes information criterion (BIC) for a model M having parameter vector � is
given by

BIC(M)=−2pM (y|�̂;M) + d(M) log n
where d(M)=dim(�) and n is the sample size, here, the sum of the two experiments. When
applied to H0 and HA, conditionally on �, we have

BIC�(H0)=−2p(y1|�̂�)p(y2|�̂�) + d0 log n
and

BIC�(HA)=−2p(y1|�̂1�)p(y2|�̂
2

�) + dA log n

where d0 and dA are the respective dimensionalities of the spline models under H0 and HA.
This produces the di�erence BIC�(H0)−BIC�(HA) given by

BIC�=2(p(y1|�̂
1

�)p(y
2|�̂2�)− p(y1|�̂�)p(y2|�̂�))−(dA−d0) log n (5)

The unit-information prior discussed by Kass and Wasserman [17] is a multivariate Normal
distribution. It has the interpretation that the amount of information in the prior represented by
its covariance matrix is equal to the amount of information in one data observation. Adopting
it for �1� and �

2
� yields the approximation

P(�1�=�
2
�|�; y1; y2)≈

exp(12BIC�)
1 + exp(12BIC�)

(6)

Kass and Wasserman [17] showed that the BIC-based approximation has a theoretical error
of order O(n−1=2) and is highly accurate in practice. Pauler [18] extended the argument to
regression models and again showed the approximation to by highly accurate in practice.
The posterior probability of H0 may thus be computed, approximately, by combining equa-

tions (4), (6), and (5).

3.3. Modi�cation of BARS

It is straightforward to modify BARS so that it may be used to �t two functions simultane-
ously, constrained to have the same knots. The marginal density, or integrated likelihood, in
(2) is replaced with

p(y1; y2|�)=
∫
p(y1|�1�; �)p(y2|�2�; �)�(�1�; �2�|�) d��

For non-Normal data this integral is approximated using BIC, as in the usual implementation
of BARS. In the reversible-jump MCMC what is needed is the ratio of two such integrated
likelihoods. In this case the log ratio is approximated by 1

2BIC�, de�ned analogously to (5).

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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4. A GAUSSIAN PROCESS TEST

In addition to a sample from the posterior from the joint posterior on � and k, BARS can pro-
duce a sample from the posterior on a set of function evaluations U =(f(t̃1); f(t̃2); : : : ; f(t̃p))
along a grid of points t̃1; t̃2; : : : ; t̃p. Let us write the posterior mean produced by BARS as Û .
For sample sizes typically used with BARS, Û will be approximately multivariate Normal
with covariance matrix �, also produced by BARS. Assuming this approximate Normality
holds for each of the two functions we write

Û
j∼N(Uj;�j) (7)

for j=1; 2, and the null hypothesis may now be written H0 :U 1 =U 2.
If we had �1 =�2 and we estimated this covariance matrix with a pooled sample covariance

under the assumption it was of full rank, then the hypothesis could be tested using Hotelling’s
T 2. However, not only do we have �1 �=�2 (and these are given by BARS and thus are not
estimated with the sample covariance matrix) but these matrices are not of full rank (the grid
size p is likely to be considerably larger than the dimensionality of the spline representation).
We therefore modify the T 2 statistic. We �rst rewrite the variance of Û

1−Û 2
in terms of its

spectral decomposition

�1 + �2 =P�PT

where � is the diagonal matrix of eigenvalues. We then suppose there are k positive
eigenvalues and write the sub-matrices corresponding to these positive eigenvalues as Pk
and �k . The modi�ed test statistic becomes

T 2k =(Û
1−Û 2

)TPTk�
−1
k Pk(Û

1−Û 2
)

Under H0 we have Pk(Û
1−Û 2

)∼N(0;�k) and therefore we also have
T 2k ∼�2k

Thus, p-values are obtained immediately. In practice, the value of k may be determined by
examining the magnitude of successive eigenvalues �i and stopping when

�k+1
�1 + · · ·+ �k ¡�

Because the grid of points could be arbitrarily �ne, i.e. t̃1; t̃2; : : : ; t̃p could be arbitrarily close
together, we are e�ectively assuming the posterior mean function produced by BARS is a
Gaussian process. We therefore call this procedure the Gaussian process test. It is important
to note that this test explicitly accounts for the uncertainty in knot selection, because that
uncertainty is incorporated into the posterior covariance matrices �j.

5. DATA ANALYSIS

The data in Figure 1 came from a study of primary motor cortex neurons in monkeys during
two conditions of a sequential pointing task [19]. Relevant experimental details are summarized

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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Table I. Comparison of Bayes factor (posterior probability P(H0|y1; y2))
and Gaussian process test (T 2k ) among 347 neurons.

T 2k ; p¡0:01 T 2k ; p¿0:01

P(H0|y1; y2)¡0:1 313 6
P(H0|y1; y2)¿0:1 1 27

With the cut-o�s P(H0|y1; y2)¡0:1 and p¡0:01 the two tests disagreed on
only 7 neurons.

in the PhD thesis of Behseta [20] and some analysis has been reported in Reference [21]. In
brief, �ring times of a single neuron were recorded while a monkey completed the task, with
increased �ring rate of the neuron indicating increased functional activity. The task required the
monkey to touch a particular sequence of 3 illuminated buttons, among 5 buttons in all. In the
�rst experimental condition the button-touches were in a predetermined and highly practiced
order (‘repeating mode’), while in the second condition they were in random order (‘random
mode’). The experiment was repeated thousands of times, over the course of more than a
year, while recordings were made on single neurons. On a given day several new neurons
were typically examined. (It was not possible to re-examine neurons across days.) A standard
practice is to aggregate �ring times for a given neuron across experimental replications into
10ms time bins, thereby reducing the data to a count for each bin (the information lost being
negligible), and this is the form in which we have analysed the data here. Figure 1 displays
the resulting histograms for 2 of the neurons (out of a total of 347) over a 300 ms period,
with BARS �ts overlaid. (The histograms have been normalized by dividing by the number
of experimental replications for each neuron, thereby making the units events=s=replication,
which are the units associated with the Poisson process intensity functions.) For a general
discussion of statistical methods in a related neurophysiological context, see Reference [22].
Among other things, that work veri�ed that it is safe to treat such aggregated and binned data
as generating Poisson-distributed counts.
The �tted intensity functions from the �rst neuron, in the top two panels of Figure 1,

do not appear to be much di�erent, while those from the second neuron, in the bottom
two panels, do seem to be di�erent. It is useful to have formal hypothesis tests for several
reasons. First, there is non-trivial noise due to relatively limited sample sizes: the number of
trials for the �rst neuron in the repeating and random conditions were r=21 and 19 while
for the second neuron there were r=46 and 12. Such relatively small numbers of trials are
common in neurophysiological research. Second, with large numbers of neurons to examine
(347 in this case) it is helpful to have an automated procedure. Third, as we indicated earlier
it is sometimes of interest to evaluate the evidence in favour of H0. For this purpose the
Bayes factor is particularly helpful because the p-value cannot separate failure to reject due
to insu�cient data from failure to reject due to evidence in favour of H0. (See Reference
[13], for further discussion of this point.)
We applied the Bayes factor and Gaussian process tests to each of the 2 neurons. For the

�rst neuron, we obtained k=8 for the degrees of freedom of the �2 statistic as explained
in Section 4 followed by P(H0|y1; y2)=0:43 and T 28 = 1:6; p=0:93. Taking account of the
standard guidance for interpreting Bayes factors [13], these two methods both lead to the

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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conclusion that there is no evidence against H0. In addition, the Bayes factor indicates no
evidence in favour of H0. Thus, scienti�cally, there are insu�cient data to draw any con-
clusion for the �rst neuron, but it would be reasonable to eliminate this neuron from any
further analysis that involved only neurons that discriminated between the two conditions. For
the second neuron we obtained P(H0|y1; y2)=0:040 and T 28 = 20:1; p=0:010, supporting the
apparent conclusion of signi�cant di�erence based on visual examination of the �gure.
The agreement of the two methods for these 2 neurons begs the question as to how often

the methods agree for the whole data set. The results are displayed in Table I, where it
is seen that the two methods almost always lead to the same conclusion (for the criteria
P(H0|y1; y2)¡0:1 and p¡0:01).

6. SIMULATION STUDY OF POWER

To examine the relative merits of the Bayes factor and Gaussian process tests we conducted
a small power study in the context of testing equality of Poisson process intensity functions.
We created two sets of distinct true functions and used three data scenarios. The functions
were chosen for convenience but were designed to re�ect the kind of modest e�ects we often
see in neuronal data. The sample sizes are also realistic.
Figure 2 displays the two sets of intensity functions we chose, prior to scaling. In the �gure

they are shown as probability densities. In the simulations these densities were multiplied by
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Figure 2. Curves used for the power study. Top, scenario A: Pictured Normal(47,49) and Normal(57,49)
densities. Bottom, scenario B: Pictured are �2(40) and Normal(57,49) densities. The densities were

multiplied by 1000 to produce realistic neuronal intensity functions.
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Table II. Probability of rejecting H0 for scenario A with 	=0:05, for
various sample sizes (number of trials) r.

r=15 r=30 r=50

Bayes factor 0.73 0.82 0.91
T 2k 0.58 0.79 0.88

Table III. Probability of rejecting H0 for scenario A with 	=0:01, for
various sample sizes (number of trials) r.

r=15 r=30 r=50

Bayes factor 0.69 0.79 0.86
T 2k 0.43 0.76 0.82

Table IV. Probability of rejecting H0 for scenario B with 	=0:05, for
various sample sizes (number of trials) r.

r=15 r=30 r=50

Bayes factor 0.86 0.98 0.99
T 2k 0.79 0.96 0.99

Table V. Probability of rejecting H0 for scenario B with 	=0:01, for
various sample sizes (number of trials) r.

r=15 r=30 r=50

Bayes factor 0.75 0.89 0.95
T 2k 0.68 0.91 0.94

1000, which produces the realistic maximal �ring rate of 57 spikes=s. We computed the power
of each test when each was adjusted to have size (type I error) 	=0:05 or 	=0:01 for sample
sizes (number of trials) r=15; 30; 50. Speci�cally, given intensity functions �1(t) and �2(t),
for j=1; 2 we computed r replications of Poisson process data based on �j(t). For each such
pair of sets of r Poisson event times we performed the Bayes factor and Gaussian process
(T 2k ) tests at level 	. This process was repeated 1000 times to determine the probability of
rejecting H0.
The results are given in Tables II–V. They show that both of these tests have good

power against realistic alternatives. For sample sizes of r=30 or more the power is very
high. The Bayes factor has consistently higher power than the Gaussian process test. How-
ever, for sample sizes of r=30 or more the distinction becomes negligible.
We also conducted additional simulation studies, trying more complex (wiggly) alternative

scenarios in an attempt to �nd cases for which the Gaussian process test had substantially

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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greater power than the Bayes factor. We were unsuccessful. In the overwhelming majority of
cases, the results were close to the ones we reported here. In one case the power of the T 2

procedure was negligibly (0.02) larger than the power of the Bayes factor test, when r=15.

7. DISCUSSION

We have presented two methods of testing equality of two functions non-parametrically, based
on BARS. Both methods appear to work well, and they agreed closely in the data set we
examined. For small samples the Bayes factor is slightly more powerful. On the other hand,
the Gaussian process test has the advantage (an advantage at least to many practitioners)
that it is based on familiar p-values. Its avoidance of the same-knot-set assumption might
help it adapt better to certain functions. This becomes an important point when one considers
the variability among many functions: our experience with multiple curve-�tting [2] suggests
that same-knot-set assumption may undersmooth parts of data by imposing too many knots.
However, we were unable to construct a pair of functions for which the Gaussian process test
had substantially greater power than the Bayes factor.
Our emphasis has been on testing equality of two Poisson process intensity functions in the

context of neurophysiology. For screening of large numbers of neurons, based on this work, we
would recommend the use of the Gaussian process test with p=0:01. Cases involving more
delicate scienti�c questions, where equality of intensity functions is considered an important
possibility, are di�erent. There it would likely be preferable to rely on the Bayes factor, which
provides an assessment of the probability in favour of H0. An additional possibility would be
to devise a method of computing the Bayes factor that would be applicable even if the knot
sets were distinct. We leave that to future e�orts.
We used the BIC to de�ne our Bayes factor, citing previous work to justify our equation

(6). Equation (4) involves a substantial summation, so that accumulation of errors is possible.
We did not investigate the accuracy of our approximation. Instead, we relied on our simulation
study as a strong indication that the approach is useful.
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