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Ventura, Valérie, Can Cai, and Robert E. Kass. Trial-to-trial variabil-
ity and its effect on time-varying dependency between two neurons. J
Neurophysiol 94: 2928-2939, 2005; doi:10.1152/jn.00644.2004. The
joint peristimulus time histogram (JPSTH) and cross-correlogram
provide a visual representation of correlated activity for a pair of
neurons, and the way this activity may increase or decrease over time.
In a companion paper we showed how a Bootstrap evaluation of the
peaks in the smoothed diagonals of the JPSTH may be used to
establish the likely validity of apparent time-varying correlation. As
noted in earlier studies by Brody and Ben-Shaul et al., trial-to-trial
variation can confound correlation and synchrony effects. In this
paper we elaborate on that observation, and present a method of
estimating the time-dependent trial-to-trial variation in spike trains
that may exceed the natural variation displayed by Poisson and
non-Poisson point processes. The statistical problem is somewhat
subtle because relatively few spikes per trial are available for esti-
mating a firing-rate function that fluctuates over time. The method
developed here decomposes the spike-train variability into a stimulus-
related component and a trial-specific component, allowing many
degrees of freedom to characterize the former while assuming a small
number suffices to characterize the latter. The Bootstrap significance
test of the companion paper is then modified to accommodate these
general excitability effects. This methodology allows an investigator
to assess whether excitability effects are constant or time-varying, and
whether they are shared by two neurons. In data from two V1 neurons
we find that highly statistically significant evidence of dependency
disappears after adjustment for time-varying trial-to-trial variation.

INTRODUCTION

Spike trains recorded from behaving animals display varia-
tion in spike timing both within and across repeated trials. In
some cases, the irregularity is consistent with the random
variation (“noise variation”) observed in repeated sequences of
events that follow Poisson or non-Poisson point process mod-
els (see Barbieri et al. 2001; Johnson 1996; Kass and Ventura
2001, and the references therein). In many contexts, however,
the conditions of the experiment, or the internal state of the
subject, may vary across repeated trials enough to produce
discernible trial-to-trial spike train variation beyond that pre-
dicted by Poisson or other point processes. Such trial-to-trial
variation may be of interest not only for its physiological
significance (Azouz and Gray 1999; Hanes and Schall 1996)
but also because of its effects on statistical procedures. In
particular, as observed by Brody (1999a,b), Ben-Shaul et al.

(2001), and Griin et al. (2003), trial-to-trial variation can affect
the assessment of correlated firing in a pair of simultaneously
recorded neurons. In this paper we present a statistical proce-
dure for testing and estimating trial-to-trial variation in time-
varying firing rate, and apply it to the problem of assessing
time-varying dependency between spike trains from two neu-
rons by extending the method of Ventura et al. (2005a).

One aspect of trial-to-trial variation is the tendency for
neuronal response to shift in time. That is, a neuron may tend
to fire earlier or later on some trials than on others, so that
realignment of trials becomes desirable (Baker and Gerstein
2001; Ventura 2004; Woody 1967). It is useful to distinguish
such latency effects from variation in the amplitude of firing
rate, which is sometimes called “excitability.” It is possible to
describe trial-to-trial amplitude variation by applying a kernel
smoother to each trial’s spike train (using a Gaussian filter or
something similar; Nawrot et al. 1999) or by smoothing the
interspike intervals of each trial and inverting to get a firing
rate (Pauluis and Baker 2000). However, smoothing each trial
ignores a special feature of this situation: although there is
substantial information on the general shape of the firing-rate
function obtained from the aggregated trials (i.e., the smoothed
peristimulus time histogram [PSTH]), there is relatively little
information per trial from which to estimate a time-varying
function, at least for smaller firing rates (e.g., <40 Hz). This
creates a compelling need for statistically efficient procedures;
otherwise, standard errors and confidence intervals become
very wide and statistical tests have little power (Kass et al.
2005). To improve estimation and inference, simple represen-
tations that take account of the aggregate pattern are needed.
One such statistical model was discussed by Brody (1999a,b),
who took the firing rate on each trial to be the sum of two
components: a background constant firing rate multiplied by a
trial-dependent coefficient and a stimulus-induced time-vary-
ing function multiplied by a second trial-dependent coefficient.
Although likely to capture some dominant features of trial-
to-trial variation, this model may be too restrictive for many
situations: it requires an experimental period during which
the neuron fires at a constant background rate, and it
assumes a single multiplicative constant describes the fluc-
tuation in stimulus-induced firing rate. Additional statistical
issues concerned the identification of the end of the back-
ground period and beginning of the stimulus-induced pe-
riod, the use of the raw PSTH rather than a smoothed
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¢ 3 3 FIG. 1. Smoothing excitability effects. A: firing rate func-
IS - tions P(f), r = 1,..., 20, of a simulated neuron having an
=3 o excitability effect described by model Eq. I, with latency
0 effects 7, = 0 for all ». Magnitude and shape of the firing rate
o e function vary from trial to trial. B, C, D: spike trains were
0 200 400 600 800 1000 0 200 400 600 800 1000  generated from the rate functions in A, and the firing rate
function P.(f) was estimated, for r = 8, using 3 methods
C Smoothing within trials D Smoothing within trials described in the text. Spike trains were generated in sets of 20
trials, and a total of 200 such sets were used to obtain, for each
— o o method, the mean estimated P,(r) (solid), and 95% pointwise
E 9 9 probability bands for P () (dotted). True P, (¢) for r = 8 is also
° shown (dashed bold). Bold dots on the x-axes in C and D
® 3 3 indicate the locations of the spline knots used for smoothing.
27 - Corresponding plots of the method in B for all 20 trials can be
= o o found in APPENDIX, Fig. Al.
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version of it to estimate the stimulus-induced firing rate, and
the assumption of Poisson spiking. The method described
here avoids the requirement of a background period because
it fits the excitability effects as continuous functions of time,
allows two or more coefficients to describe the fluctuation in
firing rate, and may be applied with non-Poisson spiking. It
also may be used to assess whether excitability effects are
shared by two or more neurons.

METHODS

The phenomenon we seek to describe is illustrated in Fig. 1A,
which displays the firing rates of a hypothetical neuron for 20 trials of
the same experiment. The firing-rate intensity functions are distinct
for the different trials. Let P,(f) denote the probability that the neuron
spikes at time 7 on trial r, and P(¢) the probability that the neuron
spikes at time  averaged across trials. Note that the PSTH provides a
representation of P(f) based on a limited set of trials. To estimate the
within-trial spiking probability P,() we make use of two observations.
First, P,(t) contains both the trial-averaged component P(f) and a
trial-specific component, which we might write as g,.(f), with g,
standing for “gain factor.” Second, there is substantial information,
across many trials, with which to estimate P(r), whereas there is often
very limited information to estimate the trial-specific gain factors.
Figure 1B displays an average of estimates P,(f) of P(f) for r = 8,
with 95% probability bands, obtained by /) smoothing (filtering) the
data for trial 8 to produce an initial estimate P,(f), 2) smoothing the
PSTH to obtain an estimate P(¢), 3) smoothing further the residual
P () — P(t) to get the final estimate P (7) as the sum of P(¢) from step
2 and the smoothed residual from step 3. This procedure is explained
in greater detail in the next subsection. We used splines to do the
smoothing, allowing a small number of degrees of freedom (large
bandwidth) for step 3 but a larger number of degrees of freedom
(smaller bandwidth) for steps 1 and 2.

If steps 2 and 3 are eliminated, the results are much worse.
Figure 1, C and D displays averages of estimates after step 1 alone
is applied, first with a small number of degrees of freedom, and
then with a larger number of degrees of freedom. Note that using
a small number of degrees of freedom will introduce excess bias,

Time (msec)

whereas using a large number of degrees of freedom will introduce
excess variance. The 95% probability bands in both C and D of
Fig. 1 are much wider than those in Fig. 1B. The mean integrated
squared errors (MISE!) for the estimates in B, C, and D are 1,463,
7,125, and 5,519, respectively. This means, for example, that the
estimates in B are almost 5,519 + 1,463 = four times more
efficient than the estimates in D, or equivalently, that the method
in D would require, if it were possible, that we use four repeats of
the same trial » = 8 to achieve the same accuracy as the estimates
in B.

In Fig. 1A, the 20 spiking probability functions P,(¢) are related to
P(t) according to

P,(1) =gt = 7)P(t—) (1)

where 7, is a latency that varies across trials. Thus the variability
of the spike trains is attributed partly to the stochastic variation of
point processes and partly to the extra variation caused by the gain
factor g, and shift (latency) 7,, which might represent trial-
dependent changes in the internal state of the subject. We have
introduced the shift parameters 7, for completeness. We do not
discuss here the estimates of latency effects because of the avail-
ability of methods for estimating these parameters; they may be
obtained, for example, by the procedure of Ventura (2004) as a
preliminary step.

In the next subsection we address the statistical problem of recov-
ering the factors g,(r). Because the spike train for a single trial is
relatively sparse, it is important to reduce the dimensionality of the
functional representation. To achieve that, we introduce a principal-
component decomposition of the functional variation g,(r), which
serves in part to reduce dimensionality and in part to provide addi-
tional interpretation of the variability.

We show how significance tests may be used to examine whether a
constant-excitability model is appropriate, and whether any additional
variability may be summarized by one or two parameters, in terms of
the principal components of the variability.

VIf £ (¢) is an estimate of £ (¢), the MISE of fis E {[[ A1) — £ (1]?dz), where
the expectation, which is with respect to the data used to produce f (1), was
approximated by a sample average across many simulated samples.
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One purpose of analyzing trial-to-trial variation is to examine its
effect on time-varying dependency between two neurons. In the
remaining subsections we extend the methods of Ventura et al.
(2005a) to incorporate trial-to-trial variation; we show how to
adjust the cross-correlogram and JPSTH for trial-to-trial variation;
and we show how significance tests may be used to produce evidence
that two neurons have shared input in the form of shared trial-to-trial
variation.

Equation 1 is the basis for the methodology developed here. Firing
rate functions that depend on ¢ are valid for Poisson processes only.
For non-Poisson processes, a conditional intensity P(t — , | H,,) must
replace P(t+ — 7,) in Eq. I, as in Ventura et al. (2005a), where H,, is
the history of trial » up to time ¢. An example of a simulated
non-Poisson neuron is treated in RESULTS, Simulated data: non-Pois-
son spike trains.

Low-dimensional representation of time-varying
excitability effects

If Eq. 1 is believed to apply, so that the firing rate of a neuron
is different across trials, an estimate of P(¢), generally the PSTH,
will not provide a complete description of the firing properties of
the neuron. One standard way to proceed is to fit, by Gaussian
filtering or by other means, the firing-rate functions on all trials
separately. Because one trial has few spikes, at least relative to the
number of spikes available to smooth a PSTH, smoothing each trial
separately will produce highly variable estimates. We propose a
more efficient alternative.

We first obtain a smoothed estimate P(f) of P(f) by smoothing the
PSTH. We prefer a spline-based method called BARS (Bayesian
adaptive regression splines) (DiMatteo et al. 2001; Kass et al. 2003)
for this purpose, but many alternative smoothing techniques would
work well for typical data sets. The advantage of BARS is that it
determines automatically the optimal number and placement of knots.
An analogous procedure, were Gaussian filtering used, would be to
determine the optimal time-varying bandwidth.

The second step is to apply binary regression to the data from
each trial separately to estimate P, (f). Binary regression, within the
framework of generalized linear models (McCullagh and Nelder
1990), is the equivalent of the usual regression framework, but for
binary data, here spike trains transformed to a binary sequence
with 1 coding for a spike at ¢, and 0 coding for no spike. Although
BARS could also be applied here to estimate P,(f), we found that
our procedure was not sensitive to knot number and placement. We
therefore obtain smooth estimates of all P,(f) by using regression
splines with the same knots used to smooth P(¢). Letting P (f)
denote the estimates thus obtained, then according to Egq. 1,
estimates of g () are g,(t) = P, (t)/P(1).

Because there are often relatively few spikes per trial, there are
relatively few data for fitting P (f), so that the deviations g,(f) are
highly variable. To reduce their variability, our next step is to identify
a suitable low-dimensional representation of these deviations. This
could be done very simply, for example, by smoothing further the
deviations §,(f), relying on splines having a small number of knots
(e.g., one to three knots), or equivalently on Gaussian filtering with a
large bandwidth. According to this scheme the trial-to-trial variability
is allowed to be curvilinear, but is constrained to be slowly varying,
across peristimulus time. The resulting smoothed deviations ¢,(7) are
less variable than g,(¢) and thus yield less variable estimates of P,(7),
as demonstrated in Fig. 1.

Our preferred method, however, is a low-dimensional principal-
components representation, where the trial-to-trial fluctuation in fir-
ing-rate intensity will be assumed to have the form

V. VENTURA, C. CAI, AND R. E. KASS

J
log g,(t) = wo, + X, wb(1) @

where the ¢,(#) functions are suitably chosen curves. A special case of
Eq. 2 is the constant excitability model, in which log g,.(1) = w,,,
discussed, for example, in Brody (1999a,b). Note that we model log
g,(¢) rather than g,(¢) as a linear combination of the principal compo-
nents to ensure that the resulting fitted g,(¢) is a positive function. By
restricting the form and number J of the ¢,(¢) functions we obtain an
interpretable low-dimensional representation of the trial-to-trial vari-
ation, in which the coefficients w;, may be estimated from the limited
data available per trial. As discussed in the following text, the ¢;(f)
functions will be taken to be principal components of the trial-to-trial
variation. The set of weights w, = (wgy,, W,» Wa,, ..., W,,) then
describes the variability specific to trial » more simply and succinctly
than would smooth functions of time.

To fit Eq. 2, we begin with the vectors of values of g,(7) evaluated
along the time axis: if there are time points , . . ., .., then for each
r we obtain the vector g,(t,), . .., &t From these R vectors we
compute the principal components of their covariance matrix >,. Let
us write these R principal components as ¢,(?), . . ., ¢x(1). We then
need to determine how many principal components to use, say J, and
obtain the coefficients {w;,} in Eq. 2. This will effectively project each
trial’s deviation from the PSTH onto the space of principal compo-
nents. To carry this out, a binary regression is again performed, except
that g,(¢) in Eq. I is replaced by exp[w,, + E}-’: 1w D)]. Stepwise
significance tests are used to determine how many of the principal
components J are actually needed to represent the trial-to-trial vari-
ability. Specifically, to determine whether the contribution of some of
the principal components is negligible, sequentially nested regression
models should be considered: first the regression model Eg. I with
g,(t) = 1, then the model involving trial-dependent constants with
g.(t) = exp(wy,), then the model involving trial-dependent constants
and the first principal component with g,(f) = exp[w,, + w;,$,(®)],
and so forth, up to the model involving the constants, and all principal
components. These models can be fit sequentially and the deviance
difference compared with a chi-squared distribution with R degrees of
freedom, where R is the number of trials. Principal components may
be included sequentially until the deviance difference is no longer
statistically significant.

All smooth fits are obtained from generalized linear model soft-
ware, available in most commercial statistical analysis packages.
These regression and smoothing methods are discussed in many
sources (e.g., Hastie and Tibshirani 1990; McCullagh and Nelder
1990). As we showed in Ventura et al. (2005a), spline-based gener-
alized linear models can also be used while taking account of non-
Poisson firing behavior. Such methods are applied to the simulated
non-Poisson spike trains in RESULTS.

Bootstrap excursion test of time-varying dependency

Suppose two neurons labeled 1 and 2 are recorded simultaneously
across multiple trials, and the task is to assess the time-varying
dependency between their spike trains. Ventura et al. (2005a) defined
the quantity

P(t,t + 8)

&0 = Lo PG+ o)

3
to analyze the excess joint spiking probability above that expected
assuming independence, where P'%(z, t + §) is the probability that
neuron 1 will spike at time ¢ and neuron 2 will spike at time ¢ + §, and
P'(#) and P?(f) are the firing rates for neurons 1 and 2. Ventura et al.
(2005a2) then demonstrated the use of a Bootstrap procedure to assess
any apparent deviation of {s(r) from 1, which would suggest extra
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TABLE 1.
and C (time-varying trial-to-trial variation)

Innovative Methodology
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Firing rates P, given by Eq. 1 for Poisson neurons A (no trial-to-trial variation), B (constant trial-to-trial variation),

Global Rate P(r)

Neuron Excitability Effect g,(¢)
A g () = 1 forall t and r
B g1 = "o ~ Gamma(0.5, 0.5) B
C g =1+ c.flt, 100, 25), ¢, = b, — b, b, ~ Gamma(1, 0.025)
D g(t) = 1 + 60c, f(t, 150, 70), ¢, = b, — b, b, ~ Gamma(l, 0.5)

P(1) = 0.02 + 4f(1, 90, 20)
P(r) = 0.05 + 6f(t, 90, 30)
P(1) = 0.05 + 6f(1, 90, 30)
P(t, 5) = M(OA(5), A, (D) = 0.05 + Tfit, 135, 40), Ay(s) = f(s, 5.5, 1.5)

Non-Poisson neuron D has conditional firing rate intensity P,(t, s) = g (0)P(t, s) = g.()A,(1)A,(s), where s is the time elapsed since the last spike before 7 (see
Simulated data: non-Poisson spike trains). f(t, a, b) denotes the normal density function with mean a and SD b. “~”" means randomly generated from. The firing

rates of all trials are shown in Fig. 2.

correlation between the two neurons above the correlation induced by
modulations in the firing rate.

When excitability and/or latency effects are present, we want to
assess whether the neurons are correlated above what is expected from
modulations in the firing rates, and from the correlation induced by
trial-to-trial variability effects. To take account of trial-to-trial vari-
ability, the procedure is modified by replacing Eq. 3 with

P21, 1+ 8)

G0 = plopa + o)

)

where P!%(t, t + §) is the probability for the rth trial that neuron 1 will
spike at time ¢ and neuron 2 will spike at time ¢ + &, and P! and P?

Poisson neurons A, B, and C

are the firing rates for neurons 1 and 2 on trial r. Equation 4 assumes
that the excess joint spiking activity does not itself depend on the trial.
To obtain an estimate of {5(), we again replace PX(t) and P*(t + &)
with P(t) and P2t + §) as estimated earlier in Low-dimensional
representation of time-varying excitability effects, and P}*(t + §)
with a smooth estimate of the joint spike count on trial r, obtained
with BARS or another suitable smoothing method. The estimate of
{s(1) is then taken to be the average of the estimates of Eq. 4 over
trials r.

The Bootstrap significance test now proceeds as in Ventura et al.
(2005a). In short, it is based on a computation of null bands for 5(2),
obtained under the null hypothesis of independence. When {(7) is
above or below these bands there is potential evidence of excess or
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TABLE 2. Deviances and significance tests P-values for Poisson

neurons A, B, and C, and non-Poisson neuron D to test form of
excitability effects

Deviance
(P-value)
Neuron
Model df A B C D
No excitability 0 1,525% 3,090 2,205 2,983
Constant excitability R 1,482 1,572%* 2,018 2,920
0.94)  (<1072)*  (<107%)  (0.001)
1 PCA excitability 2R 1,420 1,515 1,862%* 2,872%
(0.5) (0.59) (<1079)*%  (0.034)*
2 PCAs excitability 3R — — 1,801 2,872
— — (0.44) (eY)

No excitability model P(t) versus constant excitability model exp(w,,)P(t)
versus time-varying single principal-component model (1 PCA) exp[w, +
w,, ¢, (O]P(t) versus time-varying two principal-components model (2 PCAs)
exp[wo, + Wy, (t) + W, (D]P(t). R = 60 trials for neurons A, B, and C, and
R = 32 trials for neuron D. “*” indicates the model of choice.

diminished joint spiking activity. If we were assessing a joint spiking
activity at a single value of time ¢, and if {5(#) were above or below the
null bands then there would be some evidence of excess or
diminished joint activity at time 7 (and lag 6). However, because
we are examining a large number of time values, a global assess-
ment is needed.

The only difference between the Bootstrap test of Ventura et al.
(20052) and this bootstrap test is in the sampling of Bootstrap
samples. Bootstrap samples should be stochastically similar to the
observed spike trains, but they should also conform to the hypothetical
reality imposed by the hypothesis under investigation. Here, we are
testing whether the neurons are independent above the dependency
induced by modulations of firing rates and trial-to-trial variability
effects. Therefore Bootstrap samples must contain excitability effects
comparable to those in the observed spike trains. The modified
Bootstrap procedure is as follows.

1) Simulate R trials of spike trains for the two neurons as follows:

a) Sample at random and with replacement R numbers from the
integers 1, ..., R.

b) Simulate R pairs of spike trains with firing-rate functions P(t)
and P2(t), where r runs through the set of trials sampled in step 1la.

This is a bootstrap sample.

2) Obtain a smooth estimate {(f) as described above but based on
this bootstrap sample rather than on the observed data, for each & of
interest. )

3) Repeat steps 1 and 2 N times to get N estimates {5(7).

4) For each time ¢, define /,(#) and h,(?) to be the 0.025 and 0.975
quantiles of the N values {4(7).

To determine the bands accurately #, and hy, we have used
bootstrap sample sizes of N = 1,000. To reduce the computation
effort, a normal approximation can be used with N = 50, as described
in Ventura et al. (2005a).

Note that step 1 is an implementation of a parametric bootstrap.
Because the trials are not exchangeable as a result of trial-to-trial
variability effects, there is no nonparametric bootstrap alternative.

To perform the test of independence, we define G, to be the
largest area of any contiguous portion of () that exceeds the bands
defined above. [See Ventura et al. (2005a) for a mathematical defini-
tion of G,,,,. Our G, is similar in spirit to k" of Ellaway and Murphy
(1985).] To calculate its Bootstrap P-value, let ¢”(),n =1,..., N
stand for the estimate of {s(#) obtained from the nth bootstrap sample,

V. VENTURA, C. CAI, AND R. E. KASS

Neuron B

SN~

Neuron C

Neuron D

mewmrmﬂumﬁmW

FIG. 3. True and fitted firing rates for neurons B, C, and D for a represen-
tative sample of trials. For each neuron and trial, the bold and thin lines are,
respectively, the true and fitted firing rates. For neuron C, we also plotted
(dashed curves) the fits of the constant excitability model, which was rejected
by the deviance test in Table 2. Fits for all trials can be found in the APPENDIX
figures.

and G{, denote the largest area of any contiguous portion of £{”(r)
that exceeds the bands defined above. We then calculate the P-value

_ Number of Bootstrap samples for which GE,'},)O, > Gps
- N+1

as is standard for Bootstrap tests, and reject the hypothesis if inde-
pendence between the two neurons if P is small, say P < 0.05.

Adjustment of JPSTH and cross-correlogram for
trial-to-trial variability

The joint peristimulus time histogram (JPSTH) and cross-correlo-
gram provide useful visual representations of the correlated activity

TABLE 3.  Firing rates P,(t) given by Eq. 1 for neuron pairs
EI/E2 and FI1/F2

Neuron

Pair Excitability Effect g (1) Global Rate P(f)

El/F1 g:(t) = grz(t) =1+ ¢ fit, 390,35 P'(r) = 0.04 + 24£(z, 390, 40)
E2/F2 ¢, = b, — b, b, ~ Gamma(l, 0.5)  P*(f) = 0.04 + 241z, 390, 60)

Common latencies: 7, ~ fit, 0, 04)
Lo =1 + 151, 380, 30)

ft, a, b) denotes the normal density function with mean a and SD b. “~”
means randomly generated from.
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SYNCHRONY AND TRIAL-TO-TRIAL VARIABILITY

for a pair of neurons. To take account of firing-rate variation in the
neurons, Aersten et al. (1989) proposed a normalized version of the
JPSTH. Both the normalized JPSTH and the cross-correlogram as-
sume stationarity across trials. In the presence of excess trial-to-trial
variability, this may be violated. Once we have estimates of the
trial-specific firing rates P(f), however, it is straightforward to adjust
the JPSTH and cross-correlogram to remove the general excitability
effects. The corrected JPSTH of Aertsen et al. (1989) has (¢, ¢ + 8) pixel
equal to

Js(t) = P*(t, t + &) — P'(t)P*(t + ©) [®)

with estimate J4(f) taken to be the value of J4(f) when the spiking
probabilities P'(7), P*(t), and joint spiking probability P'*(t, t + &) are
replaced with their observed-data counterparts, i.e., the spike counts
divided by the number of trials (and the pixel width). Large values of
| J5(2) | are evidence that the two neurons are correlated at lag §.

Neurons E1/E2 : no synchrony

Innovative Methodology
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When excitability effects are present, values of | J5(¢) | are inflated,
which may lead to the false claim that the two neurons are dependent.
For values of | J4(f) | close to zero to still suggest independence, we

define the (¢, t + &) pixel of the corrected JPSTH to be

J8O=R™" D 1,5(0) J,.(0) = P2(t, 1+ 8) = PAOPXt + 5)

where J, 5(#) is the JPSTH based only on trial r, with estimate P)*(t,
t+ 8) — PPt + §).

A related adjustment has been used by Baker et al. (2001). The
corrected cross-correlogram at lag 6 may be then defined as

C®) = D J5(1) ©)

Note that Eq. 6 is not normalized, as in Aertsen et al. (1989), although
it could be without substantially changing the methodology. Figures 4
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TABLE 4.  Deviances and P-values, for neuron pairs EI/E2 and

FI/F2, of the tests that determine whether the two neurons in the
pair have the same, proportional, or different excitability effects

Deviance (P-value)

Neuron Pair

Model df E1/E2 F1/F2
1 PCA models
Same excitability 2R — 4,447*
(<1077)*
Proportional excitability 2R + 1 — 4,447
(0.96)
Different excitability 4R — 4,344
(0.10)
2 PCAs models
Same excitability 3R 4,270%* —
(<107 %)%
Proportional excitability 3R+ 1 4,270 —
(0.96)
Different excitability 6R 4,232 —

&)

The two neurons of the pair are fitted together with models: same excitabil-
ity model exp[w,, + w,,¢,(O]P,() and exp[w,, + w,,d,(#)]P,(t) versus
proportional excitability model exp[w,, + w,.¢,(H)]P,(r) and exp[w,, +
wy, b (D]Py(Da versus different excitability model explw, + wi d!(D]P, ()
and exp[wozr + wlzrd)]z(t)]Pz(t) [for this last model, exp(wgr) and exp(wozr),
exp(w, ) and exp(w?), and ¢| (1) and ¢>(1) are not constrained to be equal].
The same sequences of models are fitted for the two PCAs model. Here R =
60, the number of trials for one neuron. “*” indicates the model of choice.

and 6 show instances of cross-correlograms adjusted for excitability
effects.

Trial-to-trial variation shared across neurons

In previous subsections the fitted firing rate functions P!(t) and
P2(t) were not restricted to have any relationship to each other,
although it is plausible that the two neurons might have either the
same trial-to-trial effects or proportional trial-to-trial effects arising
from common inputs. These possibilities may also be examined within
the framework we have developed here, using standard generalized
linear model methodology.

We will write the equality and proportionality cases as gX(t) = g(t)
and g!(t) = a - g2(t) for all 1, where « is a scalar constant. A further
special case is the constant excitability model g'(t) = exp(w!,), where
wh, is a constant, for which equality and proportionality become
wo, = wg, and w), = log @ + w,. As explained in many texts on
linear regression (the generalized linear model context being analo-
gous), fitting these models and testing them against one another is
straightforward. Such tests are performed in the next section, with
results recorded in Table 4.

RESULTS

In the next two subsections we illustrate our methods for
fitting excitability effects based on simulated Poisson and
non-Poisson spike trains. We then illustrate how to correct
synchrony detection plots and measures, and how to carry out
bootstrap inferences.

Simulated data: Poisson spike trains

We simulate Poisson spike train data with firing rate P.(¢)
given by Eq. I under three scenarios: no trial-to-trial variation

V. VENTURA, C. CAI, AND R. E. KASS

(neuron A), constant trial-to-trial variation (neuron B), and
time-varying trial-to-trial variation (neuron C). Specifics of the
firing rates are summarized in Table 1 and shown in Fig. 2. All
three simulated neurons have 60 trials of spike trains, and there
are 200 time bins for each trial.

Table 2 lists the deviance of the fits to the simulated data for
neurons A—C. For example, for neuron A, we fitted first model
Eq. 1 with g(r) = 1, then with the trial-dependent constants
gty = exp(w,,). The deviance difference between the two
model fits (1,525 — 1,482 = 43) is compared with a )(2
distribution with degrees of freedom equal to the difference
between the degrees of freedom in the two models (60 — 0 =
60). Because the P-value is much larger than 0.05 we would
conclude, correctly, that no trial-to-trial variation is present for
neuron A. For neuron B the results indicate strong evidence for
trial-to-trial variability (P < 1073), but no evidence for time-
dependent trial-to-trial variability (P = 0.59 > 0.05), and we
would therefore correctly conclude that there is only constant
trial-to-trial variability for neuron B. Figure 3 displays the true
and the fitted firing rate functions for a representative subset of
trials, graphically demonstrating the good fit of the constant
excitability model for neuron B. The fitted rates for all 60 trials
can be found in the appenpIX, Fig. A2. Note that the no
trial-to-trial variation model would have fitted the same firing
rate for all trials. For neuron C the results indicate strong
evidence for time-dependent trial-to-trial variability that is
captured by a single principal component (P < 10~°) but no
evidence that a second principal component is required to
describe this variability (P > 0.05). Figure 3 displays, for a
representative subset of trials, the true firing rate functions, the
incorrect constant-excitability fits, and the correct time-varying
fits. The fitted rates for all 60 trials can be found in the
APPENDIX, Fig. A3.

Simulated data: non-Poisson spike trains

Data were also simulated from a non-Poisson neuron (neu-
ron D) that followed an IMI model (Kass and Ventura 2001),
for which the conditional firing rate intensity depends not only
on time ¢, as for Poisson processes, but also on s.(f), the time
of the last spike previous to time ¢, according to P[t, s.(f)] =
A (DA, s ()] Neuron D had R = 32 trials and 300 time bins.
Figure 2 shows the functions g,(f)A,(¢) for all 32 trials, and
A,(s); specifics are in Table 1.

The estimation procedure discussed earlier in Low-dimen-
sional representation of time-varying excitability effects was
followed (as in the Poisson case), with deviances and P-values
recorded in Table 2, and the resulting fitted firing rate functions

TABLE 5.  P-values of the excursion of 30( t) outside the Bootstrap
bands for the two pairs of neurons described in Table 3 and shown
in Fig. 4

P-Values for {y(t)

Model Corrected for Modulations in Neurons E1/E2 Neurons F1/F2

Firing rate <107° <107°
Firing rate, latencies 0.001 <107°
Firing rate, latencies, excitability 0.63 0.031
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800 - . .
FIG. 5. Raster plot and peristimulus time histograms

(PSTHs) for (A-B) neuron 380506.s and (C-D) neuron
380506.u.
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for six representative trials are displayed in Fig. 3. The fits
follow the true firing-rate functions on each trial quite well.
The fitted rates for all 32 trials can be found in the APPENDIX,
Fig. A4.

Simulated data: adjustment of dependency assessment

We simulated data from pairs of neurons in two situations.
In the first scenario the two neurons (neurons E1 and E2) had
independent spike trains, and both had trial-to-trial variation
and latency effects; details are given in Table 3. In the second
scenario the two neurons (F1 and F2) were similar to neurons
El and E2, but they also had an excess of synchronous spikes,
described by {y(#) in Table 3 and shown in Fig. 4. The firing
rates of these four neurons are not shown because they are
similar to neuron C in Fig. 2.

Before we can assess whether synchrony is present, we must
fit an appropriate firing-rate model to each of the four neurons.
First, the latency test of Ventura (2004) detected the presence
of latency effects in the firing rates of the four neurons, each
with values P < 10>. We estimated the latency effects as in
Ventura (2004), and shifted the trials according to the latency
estimates.

The methods of subsection Low-dimensional representation
of time-varying excitability effects were then applied to the four
neurons separately. We found that both neurons in the pair
E1/E2 had firing rates suitably described by two PCAs,
whereas both neurons in the pair F1/F2 had firing rates suitably
described by just one PCA. To assess whether the excitability
effects are shared by the two neurons, the test introduced in
Trial-to-trial variation shared across neurons was used. The
P-values given in Table 4 lead to the correct conclusion that the
same latency and excitability effects should be fitted to each
pair of simulated neurons.

Figure 4 shows the cross-correlograms and the fitted go(t) for
El/E2 and F1/F2, with Bootstrap bands, before and after
correction for latency and excitability effects.

For neurons E1/E2 (no synchrony), after the latency effect is
corrected in Fig. 4B, when the excitability effect still exists,
most of the cross-correlogram values are still outside the 95%
bootstrap band. After both the latency and excitability effects
are corrected in Fig. 4C, the cross-correlogram indicates that

800

the two neurons are independent. Figure 4F shows the esti-
mated {,(#) of the joint spiking model in Eg. 4. Before being
corrected for the latency effect, the estimated {,(f) has a peak
outside the Bootstrap band. The area outside the band has
P-value of <0.0001. After the latency effect only is screened
out, the magnitude of go(t) shown in Fig. 4F, is reduced but
with P-value of the largest area outside band equal to 0.001; all
P-values are recorded in Table 5. After both the latency and
excitability effect are corrected, the magnitude of §o(t) shown
in Fig. 4F, is further reduced and the largest area outside the
bands has a P-value of 0.63. This leads correctly to the
conclusion that the two neurons are independent. The same
procedure also yields the correct conclusion for the dependent
pair F1/F2.

Application to a pair of VI neurons

We assessed the effect of trial-to-trial variability on the corre-
lation of two neurons recorded simultaneously in the primary
visual cortex of an anesthetized macaque monkey (Aronov et al.
2003; units 380506.s and 380506.u, 90 deg spatial phase). The
data consist of 64 trials shown in Fig. 5. The stimulus, identical
for all trials, consisted of a standing sinusoidal grating that
appeared at time 0, and disappeared at 237 ms.

Figure 6A, which displays the rate-adjusted cross-correlo-
gram with bins 2.8 ms wide,? suggests that spike time syn-
chronization may occur at many time lags, but it may be
masked by effects of trial-to-trial variation. The estimated time
course synchrony at lag 2 X 2.8 = 5.6 ms, {; 4(?) is displayed
in Fig. 6C, along with 95% Bootstrap bands; (s 4(f) exceeds the
upper band for most values of 7, suggesting that lagged syn-
chrony between the two neurons is significant for almost for
the entire duration of the experiment.

To adjust for trial-to-trial variability we applied the la-
tency test of Ventura (2004) and the tests for excitability
effects described above. Before doing so a preliminary
check on the Poisson assumption was carried out. Based on

2 The choice of 2.8 ms is based on a limitation in spike recording during the
experiment: if the spike of one neuron occurred immediately (less than roughly
1.3-2 ms) after the firing of the other neuron, it could not be recorded. Because
it is impossible to detect a joint spike for a time lag <2.8 ms, we analyze time
lags >2.8 ms or < —2.8 ms.
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FIG. 6. Cross-correlograms for two neu-
rons in Aronov et al. (2003), (A) adjusted for
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a mean versus variance plot, there appeared to be a small
amount of extra variability above that predicted by the
Poisson assumption. The Poisson test of Brown et al.
(2002), based on the time rescaling theorem for Poisson
processes, also confirmed a very slight departure from
Poisson. These effects may have been a result of trial-to-
trial variation and were not large enough to warrant the
more complicated procedures required for non-Poisson
spike trains. When these analyses were repeated after re-
moval of the trial-to-trial effects (described below), the
Poisson assumption was judged to be adequate.

The test for latency effects in Ventura (2004) suggested
that no latency effects were present, with P-values of 0.096
and 0.174 for the two neurons, respectively. However, the
tests for excitability effects were highly statistically signif-
icant (P = 0.00014 and P = 0.00019, respectively). Con-
sideration of shared excitability models showed that the
most appropriate model was the shared nonconstant excit-
ability model (P < 0.00001) against the constant excitability
model (P = 0.752) for different vs. same excitability ef-
fects). Applying the sequential fitting procedure we then
determined that two principal components should be used to
capture the nonconstant excitability effects, with each prin-
cipal component explaining 83 and 14%, respectively, of the
variability in the observed pairs of spike trains. Therefore
the firing rate of neuron i = 1, 2 on trial r, Pi(t), can be
summarized as

>
w
O

T excitability effects. Dashed curves are point-
500 wise 95% Bootstrap bands computed under
the null hypothesis s (1), for all 7.

T
300
Time (ms)

T T
0 100

Pi(1) = P(1) exp[w,o + w,1¢1(1) + wahy(1)] )

where the two principal components ¢,(7) and ¢,(7) are dis-
played in Fig. 7, A and B.

An interesting additional interpretation is obtained by exam-
ining the relationship of the coefficients w,,, w,;, w,, across
trials. Figure 7 suggests that w, and w, are almost equal across
trials, and that (w, + w,)/2 is close to —5w,, so that the firing
rate model in Eq. 7 is close to

Pi(1) = P'(D)e"" expl d(1)] (8)

where ¢(f) = 5 — &,(t) — d,(¢) is also plotted in Fig. 7C. That
is, the firing rate for a particular trial is modulated by the
function in Fig. 7C, times a gain factor.

Figure 6B shows the corrected cross-correlogram with 95%
Bootstrap bands. We conclude that the correlation apparent in
the uncorrected cross-correlogram (Fig. 6A) is attributed en-
tirely to excitability effects. Figure 6C displays the estimates of
{5 6(t) (corresponding to the second bin to the right of 0 in the
cross-correlograms) before and after the adjustment for excit-
ability. Before excitability adjustment the P-value for syn-
chrony at lag 5.6 ms is <107, whereas after the adjustment
§(t) lies within the Bootstrap bands There is thus no evidence
of synchrony at that lag, beyond the correlations induced by
rate and excitability modulations. We reached similar conclu-
sion at all lags; Fig. A5 in the appENDIX displays the same as
Fig. 6C for all lags.

S
- 7 o .
= o = o | = v ]
3] g° £ £
< < T FIG. 7. Shared excitability effects for 2
o o | 2] neurons from Aronov et al. (2003). First (A)
° 7(‘) 100 300 500 ° 0 100 300 500 S 0 100 300 500 and second (B) principal components, ¢,(1)
) ) ) and ¢,(f). C: function ¢(r) = 5 — ¢,(t) —
Time (ms) Time (ms) Time (ms) b,(7) in Eq. 8. D: plot of the coefficients w,
D E against w,. Each point in the plot represents
a coefficient pair on a particular trial. E: plot
] of (w;, + w,)/2 against w,. Solid lines in D
= ) Q and E have intercept O and slopes 1 and 5,
0 ° = .
S o 0000‘8 9 %“ respectively.
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SYNCHRONY AND TRIAL-TO-TRIAL VARIABILITY

Based all the analysis in this section, we conclude that /)
there is very strong evidence of time-varying excitability for
these two neurons, 2) the excitability effects appear to be
shared by the two neurons, and 3) there is no evidence of spike
timing synchronization between these neurons.

DISCUSSION

The statistical methodology presented here uses a small
number of parameters to describe time-varying trial-to-trial
variation, or “excitability” effects. It provides assessments
of whether these effects /) are present, 2) are constant or
time-varying, 3) are shared by two neurons, and 4) are
adequately described by a small number of parameters. In
addition, the methodology allows the trial-to-trial variability
to be removed, so that assessments of correlation and
synchrony, or lagged time-locked firing, may be suitably
tested. The fitting procedures may be implemented with
widely available software for generalized linear models, and
the Bootstrap is easily implemented in high-level program-
ming languages such as MATLAB or R. The Egq. I statistical
models and their non-Poisson generalization allow excit-
ability effects to be removed so that correlation and syn-
chrony assessments may be adjusted, and the restriction in
Eq. 2 reduces the noise in the fitting, making the inference
procedures more powerful.

One simplification of the method used here is that we have
ignored variability introduced by first smoothing P(#) and P,(¢)
when we subsequently make statistical inferences based on the
coefficients of the principal components. More complicated
Bayesian or Bootstrap methods could provide more compre-
hensive inference procedures. Similarly, it would be possible to
incorporate estimation of latency into a general procedure,
rather than to rely on a preliminary assessment using the
method of Ventura (2004).

Kass and Ventura (unpublished observations) show that
excitability effects described by Eg. I produce spike count
correlations that grow as the spike count interval increases. For
realistic firing rates spike count correlations that are very small
on timescales of tens of milliseconds become nonnegligible on
scales of hundreds of milliseconds. This may help explain
correlations that have been reported and discussed (Shadlen
and Newsome 1998).

Excess trial-to-trial variability may be common in brain
regions involved in higher-order processing. One way to relate
trial-to-trial variation in neuronal activity to behavioral mea-
sures, such as reaction time, is to record large numbers of trials
and then aggregate them into groups according to levels of the
behavioral response, as in Hanes and Schall (1996). The
methods used here, however, are applicable with much smaller
numbers of trials.

The methods presented here have been applied to two
neurons, but the general approach may, in principle, be ex-
tended to allow consideration of shared effects among many
neurons recorded simultaneously.
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APPENDIX: SUPPLEMENTARY FIGURES

r=3

FiGg. Al.  95% simulation bands for the estimates of P,(t),r =1, ..., 20 for
the illustration of METHODS. Solid bands are for P,(¢) smoothed separately for
all r with spline knots as in Fig. 1D, shaded areas are for our smoothing
procedure described in Low-dimensional representation of time-varying excit-
ability effects. Bold lines are the true P,(f). All panels use the same axes ranges.
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Fig. A2. Neuron B: true (bold curves) and fitted (thin curves) firing rates
for all simulated trials.
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Fig. A3. Neuron C: true (bold curves) and fitted (thin curves) firing rates
for all simulated trials. Dashed curves are the fits from the constant excitability
model that was rejected by the deviance test.
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Fig. A4. Neuron D: true (bold curves) and fitted (thin curves) firing rates
for all simulated trials.

V. VENTURA, C. CAI, AND R. E. KASS

Fig. A5. Estimated {4(f) for neuron pair 380506.s/380506.u before and
after adjustment for the excitability covariation. Panels from left to right and
top to bottom correspond to lags 8, from —33.6 to 33.6 ms in 2.8-ms steps.
Synchrony plot for 8 = 0 was omitted because of the limitations of the
recording of joint spikes.
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