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Abstract

Many approaches for multiple testing begin with the assumption that all tests in a given
study should be combined into a global false-discovery-rate analysis. But this may be
inappropriate for many of today’s large-scale screening problems, where auxiliary in-
formation about each test is often available, and where a combined analysis can lead
to poorly calibrated error rates within different subsets of the experiment. To address
this issue, we introduce an approach called false-discovery-rate regression that directly
uses this auxiliary information to inform the outcome of each test. The method can be
motivated by a two-groups model in which covariates are allowed to influence the local
false discovery rate, or equivalently, the posterior probability that a given observation is
a signal. This poses many subtle issues at the interface between inference and computa-
tion, and we investigate several variations of the overall approach. Simulation evidence
suggests that: (1) when covariate effects are present, FDR regression improves power
for a fixed false-discovery rate; and (2) when covariate effects are absent, the method is
robust, in the sense that it does not lead to inflated error rates. We apply the method
to neural recordings from primary visual cortex. The goal is to detect pairs of neurons
that exhibit fine-time-scale interactions, in the sense that they fire together more of-
ten than expected due to chance. Our method detects roughly 50% more synchronous
pairs versus a standard FDR-controlling analysis. The companion R package FDRreg

implements all methods described in the paper.
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1 Introduction

1.1 Multiple testing in the presence of covariates

The problem of multiple testing concerns a group of related null hypotheses h1, . . . , hn that

are tested simultaneously. In its simplest form, each test yields a summary statistic zi, and

the goal is to decide which of the zi are signals (hi = 1) and which are null (hi = 0). Many

solutions to this problem, such as Bonferroni correction, aim to control the family-wise error

rate (FWER): the probability of incorrectly rejecting at least one null hypothesis, assuming

that they are all true. An alternative, which has become the dominant approach in many

domains of application, is to control the false discovery rate (FDR): the proportion of false

positives among those null hypotheses that are rejected (Benjamini and Hochberg, 1995).

Regardless of which error rate they aim to control, however, most existing approaches

obey a monotonicity property: if test statistic zi is declared significant, and zj is more

extreme than zi, then zj is also declared significant. Yet in many cases, we have auxiliary

covariate information about each test statistic, such as location in the brain or distance

along a chromosome. If significant test statistics tend to cluster in covariate space, then

monotonicity becomes undesirable, and a procedure that takes account of the covariate

should perform better. In this paper, we introduce a method called false-discovery-rate

regression (FDRR) that incorporates covariates directly into the multiple-testing problem.

The method we describe here builds on the two-groups model (Efron et al., 2001),

a popular framework for controlling the false-discovery rate. In the two-groups model,

some small fraction c of the test statistics are assumed to come from an unknown signal

population, and the remainder from a known null population. Our proposal is to allow the

mixing fraction c to depend upon covariates, and to estimate the form of this dependence

from the data. Extensive simulation evidence shows that, by relaxing the monotonicity

property in a data-dependent way, FDR regression can improve power while still controlling

the global false-discovery rate. The method is implemented in the publicly available R

package FDRreg (Scott, 2014).

Our motivating application is the identification of interactions among many simultane-

ously recorded neurons, which has become a central issue in computational neuroscience.

Specifically, we use FDR regression to detect fine-time-scale neural interactions (“syn-

chrony”) among 128 units (either single neurons or multi-unit groups) recorded simulta-

neously from the primary visual cortex (V1) of a rhesus macaque monkey (Kelly et al.,

2010; Kelly and Kass, 2012). The experiment from which the data are drawn produced

thousands of pairs of neurons, each involving a single null hypothesis of no interaction.

In this case, combining all tests into a single FDR-controlling analysis would inappropri-

ately ignore the known spatial and functional relationships among the neurons (e.g. Smith

and Kohn, 2008). Our approach for false-discovery rate regression avoids this problem: it

detects roughly 50% more significant neuron pairs compared with a standard analysis by

exploiting the fact that spatially and functionally related neurons are more likely to exhibit

synchronous firing.
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1.2 The two-groups model

In the two-groups model for multiple testing, one assumes that test statistics z1, . . . , zn arise

from the mixture

z ∼ c · f1(z) + (1− c) · f0(z) , (1)

where c ∈ (0, 1), and where f0 and f1 respectively describe the null (hi = 0) and alternative

(hi = 1) distributions of the test statistics. For each zi, one then reports the quantity

wi = P(hi = 1 | zi) =
c · f1(zi)

c · f1(zi) + (1− c) · f0(zi)
. (2)

As Efron (2008a) observed, the information contained in wi provides a tidy methodological

unification to the multiple-testing problem. Bayesians may interpret wi as the posterior

probability that zi is a signal, while frequentists may interpret 1 − wi as a local false-

discovery rate. The global false-discovery rate of some set Z1 of putative signals can then

estimated as

FDR(Z1) ≈
1

|Z1|
∑

i:zi∈Z1

(1− wi) .

Efron et al. (2001) show that this Bayesian formulation of FDR is biased upward as an

estimate of frequentist FDR, and therefore conservative.

An elegant property of the local FDR approach is that it is both frequentist and fully

conditional: it yields valid error rates, yet also provides a measure of significance that

depends on the precise value of zi, and not merely its inclusion in a larger set (c.f. Berger,

2003). This can be achieved, moreover, at little computational cost. To see how, observe

that (2) may be re-expressed in marginalized form as

1− wi =
(1− c) · f0(zi)

f(zi)
, (3)

where f(z) = c · f1(zi) + (1 − c) · f0(zi) is the overall marginal density. Importantly,

f(z) can be estimated from the empirical distribution of the test statistics; this is typically

quite smooth, which makes estimating f(z) notably easier than a generic density-estimation

problem. Therefore one may compute local FDR using cheap plug-in estimates f̂(z) and ĉ,

and avoid the difficult deconvolution problem that would have to be solved in order to find

f1(z) explicitly (e.g. Efron et al., 2001; Newton, 2002; Martin and Tokdar, 2012).

1.3 FDR regression

Implicit in the two-groups model is the assumption that all tests should be combined into

a single analysis with a common mixing weight c in (1). Yet for some data sets, this may

be highly dubious. In our analysis of neural recordings, for example, a test statistic zi is a

measure of pairwise synchrony in the firing rates of two neurons recorded from an array of

electrodes, and these zi’s exhibit spatial dependence across the array: two nearby neurons

are more likely to fire synchronously than are two neurons at a great distance. Similar

considerations are likely to arise in many applications.
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False-discovery-rate regression addresses this problem through a conceptually simple

modification of (1), in which covariates xi may affect the prior probability that zi is a

signal. In its most general form, the model assumes that

zi ∼ c(xi) · f1(zi) + {1− c(xi)} · f0(zi) (4)

c(xi) = G{s(xi)}

for an unknown regression function s(x) and known link function G : R → (0, 1).

This new model poses two main challenges versus the ordinary two-groups model (1).

First, we must estimate a regression model for an unobserved binary outcome: whether zi
comes from f1, and is therefore a signal. Second, because each mixing weight in (4) depends

on xi, there is no longer a common mixture distribution f(z) for all the test statistics. We

therefore cannot express the Bayes probabilities in marginalized form (3), and cannot avoid

estimating f1(z) directly.

Our approach, described in detail in Section 2, is to represent f1(z) as a location mixture

of the null density, here assumed to be a Gaussian distribution:

f0(z) = N(z | µ, σ2)

f1(z) =

∫
R

N(z | µ+ θ, σ2) π(θ) dθ .

Even in the absence of covariates, estimating the mixing density π(θ) is known to be a

challenging problem, because Gaussian convolution heavily blurs out any peaks in the prior.

We consider two ways of proceeding. The first is an empirical-Bayes method in which an

initial plug-in estimate π̂(θ) is fit via predictive recursion (Newton, 2002). The regression

function is then estimated by an expectation-maximization (EM) algorithm, treating π̂(θ)

as fixed. The second is a fully Bayes method in which π(θ) and the regression function s(x)

are estimated jointly using Markov-chain Monte Carlo. In simulation studies, both methods

lead to better power and equally strong protection against false discoveries compared with

traditional FDR-controlling approaches.

The rest of the paper proceeds as follows. The remainder of Section 1 contains a brief

review of the literature on multiple testing. Section 2 describes both empirical-Bayes and

fully Bayes methods for fitting the FDR regression model, and draws connections with

existing approaches for controlling the false-discovery rate. It also describes how existing

methods for fitting an empirical null hypothesis may be combined with the new approach

(Section 2.4). Section 3 shows the results of a simulation study that validates the frequentist

performance of the method. Section 4 provides background information on the neural

sychrony-detection problem. Section 5 shows the results of applying FDR regression to the

sychrony-detection data set. Section 6 contains discussion.

1.4 Connection with existing work

Our approach is based on the two-groups model, and therefore in the spirit of much previous

work on Bayes and empirical-Bayes multiple testing, including Efron et al. (2001), Johnstone

and Silverman (2004), Scott and Berger (2006), Muller et al. (2006), Efron (2008a,b), and
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Bogdan et al. (2008). The final reference has a comprehensive bibliography. We will make

some of these connections more explicit when they arise in subsequent sections.

Other authors have considered the problem of multiple testing in the presence of cor-

relation (e.g. Clarke and Hall, 2009; Fan et al., 2012). The focus there is on making the

resulting conclusions robust to unknown correlation structure among the test statistics.

Because it explicitly uses covariates to inform the outcome of each test, FDR regression is

different both in aim and execution from these approaches.

On the computational side, we also draw upon a number of recent innovations. Our

empirical-Bayes approach uses predictive recursion, a fast and efficient method for estimat-

ing a mixing distribution (Newton, 2002; Tokdar et al., 2009; Martin and Tokdar, 2012).

Our fully Bayes approach requires drawing posterior samples from a hierarchical logistic-

regression model, for which we exploit the Pólya-Gamma data-augmentation scheme intro-

duced by Polson et al. (2013).

There is also a growing body of work on density regression, where an unknown probabil-

ity distribution is allowed to change flexibly with covariates using nonparametric mixture

models (e.g. Dunson et al., 2007). We do not attempt a comprehensive review of this liter-

ature, which has goals that are quite different from the present application. For example,

one of the key issues that arises in multiple testing is the need to limit the flexibility of the

model so that the null and alternative hypotheses are identifiable. Ensuring this property

is not trivial; see Martin and Tokdar (2012). In density regression, on the other hand, only

the overall density is of interest; the mixture components themselves are rarely identifiable.

Our application draws most directly on Kelly et al. (2010) and Kelly and Kass (2012).

We review other relevant neuroscience literature in Section 4.

2 Fitting the FDR regression model

2.1 An empirical-Bayes approach

We use a version of the FDR regression model where

zi ∼ c(xi) · f1(zi) + {1− c(xi)} · f0(zi)

c(xi) =
1

1 + exp{−s(xi)}
f0(z) = N(z | µ, σ2)

f1(z) =

∫
R

N(z | µ+ θ, σ2) π(θ) dθ . (5)

We have assumed a logistic link and a Gaussian error model, both of which could be modified

to suit a different problem. We also assume a linear regression where s(x) = xTβ, and

therefore model non-linear functions by incorporating a flexible basis set into the covariate

vector x. Both µ and σ2 are initially assumed to be known; in Section 2.4, we describe how

to weaken this assumption by estimating an empirical null, in the spirit of Efron (2004).

The unknown parameters of the FDR regression model that must be estimated are

the regression coefficients β and the mixing distribution π(θ). This section describes two
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Data: Test statistics z1, . . . , zn
Input: Densities f0(z), f1(z); initial guess β(0)

Output: Estimated coefficients β and posterior probabilities wi
while not converged do

E step: Update Q(β) = E{l(β) | β(t)} as

Q(t)(β) =
n∑
i=1

{
w

(t)
i xTi β − log

(
1 + ex

T
i β
)}

w
(t)
i = E(hi | β(t), zi) =

c(xi) · f1(zi)
c(xi) · f1(zi) + {1− c(xi)} · f0(zi)

c(xi) =
1

1 + exp{−xTi β(t)}
.

M step: Update β as
β(t+1) = arg max

β∈Rd
Q(t)(β)

using the Newton–Raphson method.

end

Algorithm 1: EM for FDR regression using a plug-in estimate f̂1(z). To estimate f̂1,
we use predictive recursion (Algorithm 2).

methods—one empirical-Bayes, one fully Bayes—for doing so. Both methods are imple-

mented in the R package FDRreg.

Our empirical-Bayes approach begins with a pre-computed plug-in estimate for π(θ) in

(5), ignoring the covariates. This is equivalent to assuming that c(xi) ≡ c for all i, albeit only

for the purpose of estimating π(θ). Many methods could be used for this purpose, including

finite mixture models. We recommend the predictive-recursion algorithm of Newton (2002)

for two reasons: speed, and the strong guarantees of accuracy proven by Tokdar et al.

(2009). Predictive recursion generates a nonparametric estimate π̂(θ), and therefore an

estimate f̂1(z) for the marginal density under the alternative, after a small number of passes

(typically 5–10) through the data. The algorithm itself is similar to stochastic gradient

descent, and is reviewed in Appendix A.

Upon fixing this empirical-Bayes estimate f̂1(z), and assuming that f0(z) is known, we

can fit the FDR regression model by expectation-maximization (Dempster et al., 1977). To

carry this out, we introduce binary latent variables hi such that

zi ∼

{
f1(zi) if hi = 1 ,

f0(zi) if hi = 0

P(hi = 1) =
1

1 + exp{−xTi β}
.

Marginalizing out each hi clearly recovers the original model (4). The complete-data log-
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likelihood for β is

l(β) =
n∑
i=1

{
hix

T
i β − log

(
1 + ex

T
i β
)}

.

This is a smooth, concave function of β whose gradient and Hessian matrix are available in

closed form. It is therefore easily maximized using standard methods, such as the Newton–

Raphson algorithm. Moreover, l(β) is linear in hi, and the conditional expected value for

hi, given β, is just the conditional probability that hi = 1:

wi = E(hi | β, zi) =
c(xi) · f1(zi)

c(xi) · f1(zi) + {1− c(xi)} · f0(zi)
. (6)

These facts lead to a simple EM algorithm for fitting the model (Algorithm 1; see box).

Thus the overall approach for estimating Model (5) has three steps.

(1) Fix µ and σ2 under the null hypothesis, or estimate an empirical null (see section 2.4),

thereby defining f0(z).

(2) Use predictive recursion to estimate π(θ), and therefore f1(z), under the two-groups

model without covariate effects (see Appendix A).

(3) Use f0(z) and f1(z) in Algorithm 1 to estimate wi and the regression coefficients.

In principle, the estimate for π(θ) could be improved by using the information in the

covariates. Despite this, our experiments show that the empirical-Bayes approach is essen-

tially just as effective as using a full Bayes approach to estimate π(θ) and the regression

function jointly. This can be explained by the fact that Gaussian deconvolution is such a

poorly conditioned problem: for any finite set of observations from f1(z) in (5), there is a

large “near-equivalence” class of approximately compatible priors π(θ). Because the Bayes

oracle in (6) depends on π(θ) only through f1(z), any prior in this near-equivalence class

will yield nearly the same posterior probabilities. In this sense, predictive recursion seems

to provide a “good enough” estimate for π(θ), despite ignoring the covariates.

2.2 Empirical Bayes with marginalization

In Section 2.1, we ignored the covariates to estimate f1(z). But the most direct general-

ization of the local-FDR approach of Efron et al. (2001) would be to ignore the covariates

and estimate the overall mixture density f(z) instead. We now explain why this is a poor

solution to the FDR regression problem. Let us begin with the key insight in Efron et al.’s

approach to estimating local FDR, which is that the marginal f(z) is common to all test

statistics, and that it can be estimated well using the empirical distribution of the zi, with-

out explicit deconvolution of the mixture. This motivates a simple empirical-Bayes strategy:

(i) compute a nonparametric estimate f̂(z) of the common marginal density, along with a

likelihood- or moment-based estimate ĉ of the mixing fraction; and (ii) plug f̂ and ĉ into the

marginalized form of the posterior probability (3) to get local FDR for each test statistic.

One caveat is that ĉ must be chosen to ensure that (3) falls on the unit interval for all i.
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But this is an easy constraint to impose during estimation. See Chapter 5 of Efron (2012)

for further details.

We have already remarked that the posterior probabilities in the FDR regression model

(4) do not share a common mixture density f(z), and so cannot be expressed in marginalized

form. Nonetheless, it is natural to wonder what happens if we simply ignore this fact,

estimate a global f̂(z) from the empirical distribution of the test statistics, and use

1− w(t)
i =

{1− c(xi)}f0(zi)
f̂(zi)

(7)

in lieu of expression (6) used in Algorithm 1. This has the seemingly desirable feature that it

avoids the difficulties of explicit deconvolution. But (7) is not guaranteed to lie on the unit

interval, and constraining it to do so is much more complicated than in the no-covariates

case (3). Moreover, simply truncating (7) to the unit interval during the course of the

estimation procedure leads to very poor answers.

In our simulation studies, we do consider the following ad-hoc modification of (7), in an

attempt to mimic the original local-FDR approach as closely as possible:

1− w(t)
i =

{
1 if (1− ĉ)f0(zi) ≥ f̂(zi) ,

Tu

[
{1−c(xi)}f0(zi)

f̂(zi)

]
otherwise.

(8)

Here Tu(a) is the projection of a to the unit interval, while f̂(z) and ĉ are plug-in estimates

of the marginal density and the mixing fraction using the no-covariates method described

in Chapter 5 of Efron (2012). In our simulation studies, this modification (despite no longer

being a valid EM algorithm) does give stable answers with qualitatively correct covariate

effects. But because it zeroes out the posterior probabilities for all zi within a neighborhood

of the origin, it yields heavily biased estimates for β, and in our studies, it is less powerful

than the method of Section 2.1.

2.3 Full Bayes

From a Bayesian perspective, the hierarchical model

(zi | θi) ∼ N(µ+ θi, σ
2)

(θi | hi) ∼ hi · π(θi) + {1− hi} · δ0

P(hi = 1) = c(xi) =
1

1 + exp(−xTi β)
, (9)

together with priors for β and the unknown distribution π(θ), defines a joint posterior distri-

bution over all model parameters. We use a Markov-chain Monte Carlo algorithm to sample

from this posterior, drawing iteratively from three complete conditional distributions: for

the mixing density π(θ); for the latent binary variables hi that indicate whether zi is signal

or null; and for the regression coefficients β.

An important question is how to parameterize π(θ). In the no-covariates multiple-testing

problem, there have been many proposals, including simple parametric families (Scott and
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Berger, 2006; Polson and Scott, 2012) and nonparametric priors based on mixtures of Dirich-

let processes (Do et al., 2005). In principle, any of these methods could be used. In our

analyses, we model π(θ) as a K-component mixture of Gaussians with unknown means,

variances, and weights. We choose K via a preliminary run of the EM algorithm for de-

convolution mixture models, picking the K that minimizes the Akaike information criterion

(AIC). (In simulations, we found that AIC was slightly better than BIC at recovering K

for the deconvolution problem, as distinct from the ordinary density-estimation problem.)

The model’s chief computational difficulty is the analytically inconvenient form of the

conditional posterior distribution for β. The two major issues here are that the response

hi depends non-linearly on the parameters, and that there is no natural conjugate prior to

facilitate posterior computation. These issues are present in all Bayesian analyses of the

logit model, and have typically been handled using the Metropolis–Hastings algorithm. A

third issue, particular to our setting, is that the binary event hi is a latent variable, and

not actually observed.

We proceed by exploiting the Pólya-Gamma data-augmentation scheme for binomial

models recently proposed by Polson et al. (2013). Let xi be the vector of covariates for

test statistic i, including an intercept term. The complete conditional for β depends only

h = {hi : i = 1, . . . , n}, and may be written as

p(β | h) ∝ p(β)

n∏
i=1

(ex
T
i β)hi

1 + ex
T
i β

,

where p(β) is the prior. By introducing latent variables ωi ∼ PG(1, 0), each having a

standard Pólya-Gamma distribution, we may re-express each term in the above product as

the marginal of a more convenient joint density:

(ex
T
i β)hi

1 + ex
T
i β
∝ eκixTi β

∫ ∞
0

e−ωi(x
T
i β)

2/2 p(ωi) dωi ,

where κi = hi− 1/2 and p(ω) is the density of a PG(1,0) variate. Assuming a normal prior

β ∼ N(c,D), it can be shown that β has a conditionally Gaussian distribution, given the

diagonal matrix Ω = diag(ω1, . . . , ωn). Moreover, the conditional for each ωi, given β, is

also in the Pólya-Gamma family, and may be efficiently simulated.

Together with standard results on mixture models, the Pólya-Gamma scheme leads to

a simple, efficient Gibbs sampler for the fully Bayesian FDR regression model. Further

details of the Bayesian method can be found in Appendix B, including the priors we use,

the conditionals needed for sampling, and the default settings implemented in FDRreg.

On both simulated and real data sets, we have observed that the empirical-Bayes and

fully Bayes approaches give very similar answers for the local false-discovery rates, and thus

reach similar conclusions about which cases are significant. The advantage of the Bayesian

approach is that it provides a natural way to quantify uncertainty about the regression

function s(x) and π(θ) jointly. This is counterbalanced by the additional computational

complexity of the fully Bayesian method.
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2.4 Using an empirical null

The FDR regression model (5) assumes that µ and σ2 are both known, or can be derived

from the distributional theory of the test statistic in question. As Efron (2004) observes,

however, many data sets are poorly described by this “theoretical null,” and an “empirical

null” must be estimated instead. This is a common situation in high-dimensional screening

problems, where correlation among the test statistics, along with many other factors, can

invalidate the theoretical null. Efron (2004) proposes two methods for estimating µ and

σ2 from the data: (1) maximum likelihood, and (2) central matching, whereby a quadratic

function is fit to the log density of some central fraction (e.g. a third) of the data.

The estimation of an empirical null hypothesis, whether by maximum likelihood or

central matching, can be incorporated into the empirical-Bayes method of Section 2.1 as

a simple pre-processing step. This approach is used later in our analysis of the neural

synchrony data, and is offered as an option in FDRreg. For reasons of identifiability, it is

challenging to incorporate an empirical null in a fully Bayesian manner, especially without

a strong prior about the null hypothesis. We refer the reader to Martin and Tokdar (2012)

for a detailed discussion of this issue, as well as an alternate proposal for estimating an

empirical null. When we use an empirical null in the context of the fully Bayes model

described in Section 2.3, µ and σ2 are always pre-computed in empirical-Bayes fashion

using Efron’s method. This may be slightly less efficient than performing a full Bayesian

analysis, but we believe the improved stability is worth the trade-off.

3 Simulations

This section presents the results of a simulation study that confirms the advantage of false-

discovery-rate regression in problems where signals cluster in covariate space. We simulated

data sets having two covariates xi = (xi1, xi2), with each test statistic zi drawn according

to the covariate-dependent mixture model (5). We considered five choices for s(x):

(A) s(x) = −3 + 1.5x1 + 1.5x2
(B) s(x) = −3.25 + 3.5x21 − 3.5x22
(C) s(x) = −1.5(x1 − 0.5)2 − 5|x2|
(D) s(x) = −4.25 + 2x21 + 2x22 − 2x1x2
(E) s(x) = −3

These choices are shown in the left four panels of Figure 1. Function A is linear;

Functions B and C are nonlinear but additive in x1 and x2; Function D is neither linear

nor additive. Function E, not shown, is the flat function s(x) = −3. This is included in

order to understand the behavior of FDR regression when it is inappropriately applied to

a data set with no covariate effects. The parameters for each function were chosen so that

between 6% and 10% of the zi were drawn from the non-null signal population f1(z).

We also considered four choices for π(θ), all discrete mixtures of Gaussians N(µ, τ2):

(1) π(θ) = 0.48 ·N(−2, 1) + 0.04 ·N(0, 16) + 0.48 ·N(2, 1)
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(2) π(θ) = 0.4 ·N(−1.25, 2) + 0.2 ·N(0, 4) + 0.4 ·N(1.25, 2)

(3) π(θ) = 0.3 ·N(0, 0.1) + 0.4 ·N(0, 1) + 0.3 ·N(0, 9)

(4) π(θ) = 0.2 ·N(−3, 0.01) + 0.3 ·N(−1.5, 0.01) + 0.3 ·N(1.5, 0.01) + 0.2 ·N(3, 0.01)

These choices for π(θ) are shown in the right four panels. Choices 1 and 4 have most

of the non-null signals separated from zero, and are thus easier problems overall. Choices 2

and 3 have most of the signals near zero, and are thus harder problems overall.

For each of the 20 possible combinations for s(x) and π(θ) listed above, we simulated

100 data sets of n = 10000 test statistics. Each design point xi was drawn uniformly from

the unit cube, [0, 1]2. To each simulated data set, we applied the following methods.

BH: the Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995).

2G: the two-groups model described in Chapter 5 of Efron (2012).

EB: Empirical Bayes FDR regression using predictive recursion (Section 2.1).

EBm: Empirical Bayes FDR regression with ad-hoc marginalization (Section 2.2).

FB: Fully Bayes FDR regression using Pólya-Gamma data-augmentation (Section 2.3).

For the EB, EBm, and FB methods, we fit a nonlinear additive model by expanding each

covariate in a B-spline basis with five equally spaced knots. Because additivity is assumed,

these methods cannot recover Function D exactly, making this a useful robustness check.

The theoretical N(0, 1) null was assumed in all cases. All methods are implemented in the

R package FDRreg, and the R script used for the study is available as a supplemental file to

the manuscript.

In each case, we selected a set of non-null signals by attempting to control the global

false discovery rate at 10% using each method. We then calculated both the realized false

discovery rate and the realized true positive rate (TPR) by comparing the selected test

statistics to the truth. Recall that the true positive rate is defined to be the number of true

signals discovered, as a fraction of the total number of true signals.

The results, shown in Table 1 and Figure 2, support several conclusions. First, the

FDR regression method (EB, EBm, and FB) effectively control the false discovery rate at

the nominal level (in this case 10%). When covariate effects are present, the empirical-

Bayes method violates the nominal level about as often as the other methods. It does so

with greater frequency only when covariate effects are absent (function E). Even then, the

average FDR across the different simulated data sets is only slightly higher than the nominal

level (e.g. 11% versus 10%). To put this average FDR in context, the realized FDR of the

Benjamini–Hochberg method for a single simulated data set typically ranges between 5%

and 15%. Therefore, any bias in the regression-based method is small, compared to the

variance of realized FDR across all procedures. (See the left 20 panels of Figure 2.)

When covariate effects are present, FDR regression has better power than existing meth-

ods for a fixed level of desired FDR control. The amount of improvement depends on the

situation. For priors 1 and 4, the improvement was substantial: usually between 40–50%

in relative terms, or 8–12% in absolute terms). For priors 2 and 3, the power gains of FDR

regression were more modest, but still noticeable. These broad trends were consistent across
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Figure 1: Settings for the simulation study. Left four panels: choices for the bivariate
regression function s(x1, x2). The contours show the prior log odds that a test statistic
in that part of covariate space will be a signal. Function E, not shown, is a flat function:
s(x) = −3. Right four panels: choices for π(θ).

False discovery rate (%) True positive rate (%)
π(θ) s(x) BH 2G EBm EB FB BH 2G EBm EB FB

1 A 8.9 9.0 9.2 9.7 ?10.7 22.5 22.4 24.0 30.1 31.0
B 9.5 9.5 9.4 9.7 ?11.1 21.8 21.7 23.7 32.5 34.2
C 9.5 9.5 9.4 9.5 10.2 22.8 22.4 24.2 33.3 34.3
D 9.3 9.3 9.5 9.7 ?11.2 22.3 22.0 23.7 29.2 30.4
E 9.4 9.0 9.7 ?11.0 10.2 18.0 17.4 18.1 18.7 18.0

2 A 9.2 9.1 9.3 9.7 10.2 13.5 13.4 14.0 18.0 18.6
B 8.6 8.8 8.7 9.2 10.4 13.0 13.1 13.7 19.0 20.2
C 9.2 9.3 9.4 9.3 10.3 13.7 13.6 14.3 19.9 20.9
D 9.3 9.3 9.5 9.7 10.6 13.8 13.7 14.4 17.7 18.3
E 9.6 8.8 9.6 ?10.8 9.3 11.3 10.9 11.3 11.7 11.1

3 A 8.9 ?10.6 9.4 9.0 8.6 9.4 9.7 9.7 11.1 11.0
B 9.0 10.4 9.5 8.7 8.9 9.3 9.6 9.5 11.6 11.8
C 8.6 10.0 9.0 8.4 7.9 9.6 9.9 9.8 11.8 11.7
D 9.2 ?10.7 9.8 9.3 9.0 9.8 10.0 10.0 11.3 11.2
E 10.0 ?10.9 10.5 ?11.3 9.3 8.7 8.7 8.6 8.7 8.4

4 A 9.0 9.1 9.1 10.3 ?10.9 21.8 22.0 23.7 30.8 31.6
B 9.4 9.4 9.4 10.3 ?11.1 21.8 21.7 24.1 33.8 34.7
C 9.2 9.5 9.6 10.1 ?10.4 22.5 22.7 24.6 34.7 35.2
D 9.0 9.3 9.4 9.9 ?11.1 22.3 22.5 24.1 30.3 31.1
E 9.9 9.3 10.1 ?10.9 10.0 17.0 16.2 17.0 17.5 16.7

Table 1: Results of the simulation study. The rows show different configurations for
π(θ) and s(x); see Figure 1. The columns show the realized false discovery rate and true
positive rate for the five different procedures listed in Section 3. The rates are shown as
percentages, with results averaged over 100 simulated data sets. In all cases, the nominal
FDR was controlled at the 10% level. FDR entries marked with a star are significantly
larger than the nominal level of 10%, as judged by a one-sided t-test (p < 0.05).
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Figure 2: Boxplots of false discovery rate (FDR, left 20 panels) and true positive rate
(TPR, right 20 panels) for the simulation study. The rows are the different true priors
π(θ), and the columns are the different true regression function s(x1, x2). Within each
panel, the boxplots show the median, interquartile range (white bar), and range (grey bar)
for each method across the 100 simulated data sets. Within each panel, the methods are
arranged from left to right as: Benjamini–Hochberg (BH), the two-groups model without
covariates (2G), empirical Bayes with marginalization (EBm, Section 2.2), empirical Bayes
(EB, Section 2.1), and fully Bayes (FB, Section 2.3).

the different functions.

The empirical-Bayes and fully Bayes methods perform very similarly overall. The only

noticeable difference is that, when covariate effects are absent (Function E), the empirical

Bayes method violates the nominal FDR level slightly more often than the fully Bayes

method. We do not understand why this is so, but as the boxplots in Figure 2 show,

the effect is quite small in absolute terms. They also show that the performance of the

empirical-Bayes method in these cases is quite similar in this respect to the two-groups

model without covariates (labeled 2G in the plots).

4 Detecting neural synchrony

4.1 Background

The ability to record dozens or hundreds of neural spike trains simultaneously has posed

many new challenges for data analysis in neuroscience (Brown et al., 2004; Buzsaki, 2004;

Aertsen, 2010; Stevenson and Kording, 2011). Among these, the problem of identifying

neural interactions has, since the advent of multi-unit recording, been recognized as cen-

trally important (Perkel et al., 1967). Neural interactions may occur on sub-behavioral

timescales, where two neurons may fire repeatedly within a few milliseconds of each other.
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It has been proposed that such fine-timescale synchrony is crucial for binding visual objects

(see Gray, 1999; Shadlen and Movshon, 1999, for opposing views), enhancing the strength

of communication between groups of neurons (Niebur et al., 2002), and coordinating the

activity of multiple brain regions (Fries, 2009; Saalmann and Kastner, 2011). It has also

been argued that the disruption of synchrony may play a role in cognitive dysfunctions and

brain disorders (Uhlhaas et al., 2009).

Furthermore, there is growing recognition that synchrony and other forms of correlated

spiking have an impact on population coding (Averbeck et al., 2006) and decoding (Graf

et al., 2011). The proposed roles of neural synchrony in numerous computational processes

and models of coding and decoding, combined with the knowledge that the amount of

synchrony can depend on stimulus identity and strength (Kohn and Smith, 2005) as well as

the neuronal separation (Smith and Kohn, 2008), make it particularly important that we

have effective tools for measuring synchrony and determining how it varies under different

experimental paradigms.

Rigorous statistical detection of synchrony in the activity of two neurons requires for-

mulation of a statistical model that specifies the stochastic behavior of the two neural spike

trains under the assumption that they are conditionally independent, given some suitable

statistics or covariates (Harrison et al., 2013). When n neural spike trains are recorded

there N =
(
n
2

)
null hypotheses to be tested, which raises the problem of multiplicity. In

the face of this difficulty, a popular way to proceed has been to control the false-discovery

rate using the Benjamini-Hochberg procedure Benjamini and Hochberg (1995), combining

all N test statistic into a single analysis. Yet this omnibus approach ignores potentially

useful information about the spatial and functional relationships among individual neuron

pairs. We therefore use false discovery rate regression to incorporate these covariates into

an investigation of synchrony in the primary visual cortex (V1). Specifically, we analyzed

data from V1 neurons recorded from an anesthetized monkey in response to visual stimuli

consisting of drifting sinusoidal gratings, i.e., light whose luminance was governed by a sine

wave that moved along an axis having a particular orientation. Details of the experiment

and recording technique may be found in Kelly et al. (2007). Drifting gratings are known

to drive many V1 neurons to fire at a rate that depends on orientation. Thus, many V1

neurons will have a maximal firing rate for a grating in a particular orientation (which is the

same as an orientation rotated by 180 degrees) and a minimal firing rate when the grating

orientation is rotated by 90 degrees. For a given neuron, a plot of average firing rate against

angle of orientation produces what is known as the neuron’s “tuning curve.” Spike trains

from 128 neurons were recorded in response to gratings in 98 equally-spaced orientations,

across 125 complete replications of the experiment (125 trials). Here analyze data from the

first 3 seconds of each 30-second trial. The 128 neurons generated 8,128 pairs, and thus

8,128 tests of synchrony. We applied the model in Equation (4) to examine the way the

probability of synchrony c(x) for a pair of neurons depends on two covariates: the distance

between the neurons and the correlation of their tuning curves (i.e., the Pearson correlation

between the two vectors of length 98 that contain average firing rate as a function of ori-

entation). The idea is that when neurons are close together, or have similar tuning curves,

they may be more likely to share inputs and thus more likely to produce synchronous spikes,
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compared to the number predicted under conditional independence. Our analysis, reported

below, substantiates the observation of Smith and Kohn (2008) that the probability of fine

time-scale synchrony for pairs of V1 neurons tends to decrease with the distance between

the two neurons and increase with the magnitude of tuning-curve correlation.

4.2 Data pre-processing

Our analysis takes advantage of a recently-developed technique for measuring synchrony

across binned spike trains (where the time bins are small, such as 5 milliseconds). For a

pair of neurons labeled 1 and 2, we calculate

ζ̂ =
number of bins in which both neurons spike∑

t P̂ (neuron 1 spikes at t | D(1)
t ) · P̂ (neuron 2 spikes at t | D(2)

t )
, (10)

where D
(1)
t and D

(2)
t refer to relevant conditioning information for the firing activity of

neurons 1 and 2 at time t, and the sum is over all time bins across all experimental trials

(Kelly and Kass, 2012). The denominator of (10) is an estimate of the number of joint spikes

that would be expected, by chance, if D
(j)
t characterized the spiking activity of neuron j

(with j = 1, 2) and, apart from these background effects, the neurons were independent.

When ζ̂ ≈ 1, or log ζ̂ ≈ 0, the conclusion would be that the number of observed synchronous

spikes is consistent with the prediction of synchronous spiking under independence, given

the background effects D(j). Note that this conditioning information D
(j)
t is intended to

capture effects—including tuning curve information—on each neuron separately, whereas

the covariates that enter the FDRR model (4) operate pairwise. Thus, for example, two

independent neurons having similar tuning curves would both be driven to fire more rapidly

by a grating stimulus in a particular orientation, and would therefore be likely to produce

more synchronous spikes by chance than a pair of independent neurons with dissimilar

tuning curves. As another example of conditioning information, under anesthesia there are

pronounced periods during which most recorded neurons increase their firing rate (Brown

et al., 2010). These waves of increased network activity have much lower frequency than

many other physiological wave-like neural behaviors, and are called “slow waves.” One would

expect slow-wave activity to account for considerable synchrony, even if, conditionally on

the slow-wave activity, a pair of neurons were independent. The statistic ζ̂ in formula (10)

is a maximum-likelihood estimator in the continuous-time framework discussed by Kass

et al. (2011), specifically their equation (22). The purpose of that framework, and of (10),

is to describe the way synchrony might depend on background information. For example,

Kass et al. (2011) contrasted results from two pairs of V1 neurons. Both pairs exhibited

highly statistically significantly enhanced synchrony above that predicted by stimulus effects

(tuning curves) alone. However, the two pairs were very different with respect to the

relationship of synchrony to slow-wave network activity. In one pair, when background

information characterizing the presence of slow-wave network activity was used in (10), the

enhanced synchrony vanished, with log ζ̂1 = .06 ± .15. In the other pair, it persisted with

log ζ̂2 = .82 ± .23, indicating the number of synchronous spikes was more than double the

number predicted by slow-wave network activity together with trial-averaged firing rate.
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The set of 8,128 log ζ̂ coefficients analyzed here, together with their standard errors,

were created with a model that differed in two ways from that used by Kass et al. (2011).

First, to better capture slow-wave network effects, in place of a linear model based on single

count variable (for neurons i and j, Kass et al. used the total number of spikes within the

past 50 ms time among all neurons other than neurons i and j) a general nonparametric

function of the count was fitted, using splines. Second, a nonparametric function capturing

spike history effects was used. This allows non-Poisson variability, which is important in

many contexts (Kass et al., 2014), and exploratory analysis indicated that it is consequential

for this data set as well.

5 Analysis and results

As an illustration of the method, we apply false discovery rate regression to search for

evidence of enhanced synchrony in a three-second window of recordings on these 128 V1

neurons. We emphasize that what we refer to here as “findings” or “discoveries” are neces-

sarily tentative. As in many genomics data-analysis pipelines, additional follow-up work is

clearly necessary to verify any individual discovery arising from an FDR-controlling analysis

of a large-scale screening experiment. Nonetheless, because of its clear covariate effects, the

V1 neural recordings provide a good illustration of the FDR regression method.

We use the subscript i to index a pair of neurons, in order to maintain notational

consistency with the rest of the paper. Let yi = log ζ̂i denote the observed synchrony

statistic for the ith pair of neurons being tested. This comes from Formula (10), after

conditioning on slow-wave activity. Let si denote the estimated standard error for log ζ̂i,

which is obtained from a parametric bootstrap procedure, following Kass et al. (2011)

and Kelly and Kass (2012). We define zi = yi/si as our test statistic, and assume that

the zi arise from Model (5). The pairs where θi = 0 correspond to the null hypothesis

of conditional independence, given slow-wave network activity. As previously mentioned,

there are two relevant covariates: (1) inter-neuron distance, measured in micrometers; and

(2) tuning-curve correlation (ri).

Panel A of Figure 3 provides some initial exploratory evidence for a substantial distance

effect. It shows two histograms of z-scores: one for neuron pairs where zi < 2 (suggesting no

synchrony enhancement), and another for neuron pairs where zi ≥ 2 (suggesting possible

synchrony enhancement). It is clear from the figure that nearby neuron pairs are much

more likely to have zi ≥ 2, versus neuron pairs at a longer distance. This motivates the use

of covariate-dependent prior probabilities in (5).

To fit the FDR regression model, we first estimated an empirical null f0(z), as described

in Section 2.4. This was necessary because the empirical distribution of z-scores was poorly

described by a standard normal density. We used the maximum-likelihood method from

Efron (2004), which yielded µ = 0.61 and σ = 0.81. This suggested underdispersion and a

positive bias versus the theoretical N(0, 1) null. Fixing µ and σ at these estimated values,

we then ran predictive recursion to estimate f1(z), as described in Section 2.1. Panel B

of Figure 3 shows the estimates for f0(z) (solid red line) and f1(z) (dashed blue line),

scaled by the empirical-Bayes estimate of the mixing fraction c in the two-groups model
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Figure 3: Panel A shows histograms of inter-neuron distances for pairs with synchrony
z-score less than 2, versus those with z-score larger than 2. Panel B shows the empirical
null density f0(z), together with the signal density f1(z) estimated by predictive recursion,
superimposed upon the histogram of the raw z-scores. Panel C compares discoveries at the
10% FDR level using the ordinary two-groups local FDR model, versus those under the
FDR regression model. Panel D shows that the extra discoveries made by FDR regression
(red points) tend to concentrate at short inter-neuron distances compared with the rest of
the neuron pairs. Panels E and F show the estimated partial regression functions for prior
log-odds of being a signal versus distance and tuning curve correlation. The black lines are
the estimates, and the grey areas show 95% posterior credible intervals arising from the full
Bayes analysis.
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(1), and superimposed on the histogram of z-scores. The alternative hypothesis appears to

be dominated by cases where zi > 0.

Having computed estimates for f0(z) and f1(z), we then used the empirical-Bayes

method of Section 2.1 to estimate the FDR regression model by expectation–maximization.

We assumed that the prior log odds of synchrony (θi 6= 0) could be described by an additive

model involving distance and tuning-curve correlation:

s(x) = β0 + s1(distance) + s2(correlation) .

The partial regression functions were modeled by expanding each covariate in a B-spline

basis, with the degrees of freedom chosen to minimize AIC. To regularize the estimates, we

used N(0, 1) priors on the spline coefficients. The partial regression functions are identified

only up to additive constants. To identify them, we estimated an overall intercept β0, and

fixed s1 and s2 to be zero at their left-most endpoints. As a robustness check, we also ran

the full Bayes method, which does not require a pre-computed estimate for f1(z). We focus

mainly on results for the empirical-Bayes approach, but the fully Bayes estimates of local

FDR were very similar, and we use the full Bayes method to construct confidence bands for

the underlying regression function.

We controlled the (Bayesian) false discovery rate at the 10% level, and compared the

resulting discoveries under the FDR regression model to those under the ordinary two-

groups (local FDR) model without covariate effects. The regression model yielded roughly

50% more discoveries compared to the two-groups model, 763 versus 489. Panels C and

D of Figure 3 show that these extra discoveries tend to be at the borderline of statistical

significance (zi ≈ 2), but heavily concentrated at short distances, where the prior odds of a

significant z-score are much higher.

Panels E and F of Figure 3 show the estimated partial regression functions s1 and s2,

together with 95% posterior credible intervals derived from the fully Bayesian posterior dis-

tribution of the spline coefficients. The distance effect suggested by Panel A is confirmed by

the confidence bands of the partial regression function for distance in Panel E. Tuning-curve

correlation also appears to play a role in the prior odds of synchrony, with its effect roughly

(though not exactly) symmetric about zero. To provide intuition about the magnitude of

the covariate effects, we compare two sets of pairs.

• A neuron pair at distance 2433 micrometers (the 75th percentile), and with tuning-

curve correlation of 0.12 (the median), was estimated to have a 2.3% prior probability

of being a non-null signal. A neuron pair with the same tuning curve correlation but

separated by only 1200 micrometers (the 25th percentile) was estimated to have a

16.5% prior probability of being a non-null signal.

• A neuron pair at distance 1789 micrometers (the median), and with tuning-curve

correlation of 0, was estimated to have a 6.9% prior probability of being a non-null

signal. Another neuron pair at the same distance of 1789 micrometers, but with

tuning-curve correlation of 0.5, was estimated to have a 10% prior probability of being

a non-null signal. A third pair at the same distance and tuning-curve correlation of

0.75 was estimated to have a 24% prior probability of being a non-null signal.

18



6 Final remarks

Our FDR regression model preserves the spirit of the unified Bayes/frequentist approach of

the two-grouds model (1) while incorporating test-level covariates that, in our motivating

example, describe the physical and functional relationships among neurons. Our results

show that involving these covariates directly in the multiple-testing model has the potential

to improve inferences about fine-time-scale neural interactions. While we consider our

findings to be preliminary, the distance and tuning-curve effects suggested by our analysis

are easily interpretable, and support the previous analyses of Smith and Kohn (2008).

The neural-recordings data set we have analyzed here is typical of many found in today’s

pressing scientific problems, in that it exhibits two important statistical features: the need

to adjust for simultaneous inference, and the presence of spatial information, or some other

nontrivial covariate structure. Previous attempts to handle this structure have typically

involved separate analyses on subsets of the data, such as the “front-versus-back of brain”

split considered by Efron (2008b). When there is an obvious subset structure in the data,

such an approach may be appealing. Yet it requires case-by-case judgments, and opens

the door to further multiplicity issues regarding the choice of subsets. Our results show

that false-discovery-rate regression can avoid these difficulties, without compromising on

the global error rate, by incorporating covariates directly into the testing problem. It is

therefore suited to the increasingly common situation in which test statistics should not be

considered exchangeable.
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A Predictive recursion

Predictive recursion is used to estimate the mixing distribution π(θ) in the following for-

mulation of the two-groups model without covariates:

zi ∼ c · f1(zi) + (1− c) · f0(zi)
f0(z) = N(z | µ, σ2)

f1(z) =

∫
R

N(z | µ+ θ, σ2) π(θ) . (11)

An equivalent formulation is

zi ∼ N(µ+ θi, σ
2)

θi ∼ Ψ , Ψ = π̃1(θ) + π0δ0 ,

where Ψ is absolutely continuous with respect to the dominating measure ν defined as the

sum of Lebesgue measure on R and a point mass at 0. Here π̃1(θ) = c ·π(θ) is a sub-density

corresponding to signals, and π0 = 1− c is the mass at zero corresponding to nulls.
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Data: Test statistics z1, . . . , zn
Input: Null model N(µ, σ2); weights γ[i]; initial guess Ψ[0] = π̃

[0]
1 (θ) + π

[0]
0 δ0 having a

continuous sub-density π̃
[0]
1 (θ) and a Dirac measure at zero of mass π

[0]
0 .

for i = 1, . . . , n do

m
[i]
0 = π

[i−1]
0 ·N(zi | µ, σ2)

f
[i]
1 (θ) = N(zi | µ+ θ, σ2) π̃

[i−1]
1 (θ) (discrete grid)

m
[i]
1 =

∫
R
f
[i]
1 (θ) dθ (trapezoid rule)

π
[i]
0 = (1− γ[i]) · π[i−1]0 + γ[i] ·

(
m

[i]
0

m
[i]
0 +m

[i]
1

)

π̃
[i]
1 (θ) = (1− γ[i]) · π̃[i−1]1 (θ) + γ[i] ·

(
f
[i]
1 (θ)

m
[i]
0 +m

[i]
1

)

end

Output: Estimates c = 1− π[n]0 and π(θ) = π
[n]
1 (θ)/c.

Algorithm 2: Predictive recursion for estimating π(θ) and c in Model (11). The
subdensity π̃1(θ) = cπ(θ) is approximated on a discrete grid, and integrals with respect
to π̃1(θ) are calculated by the trapezoid rule.

Predictive recursion (Newton, 2002) is a stochastic algorithm for estimating Ψ, or for

any mixing density with respect to an arbitrary dominating measure ν, from observations

z1, . . . , zn. Assume that µ and σ2 are fixed. Begin with a guess Ψ[0] and a sequence of

weights γ[i] ∈ (0, 1). For i = 1, 2, . . . , n, recursively compute the update

m[i−1](zi) =

∫
R

N(zi | µ+ u, σ2) Ψ[i−1](du) (12)

Ψ[i](du) = (1− γ[i])Ψ[i−1](du) + γ[i] ·

{
N(zi | µ+ u, σ2)Ψ[i−1](du)

m[i−1](zi)

}
. (13)

The final update,

Ψ[n] = π̃
[n]
1 (θ) + π

[n]
0 δ0 = c[n] · π[n](θ) + (1− c[n]) · δ0 ,

provides estimates for c and the mixing density π(θ). In practice, the continuous component

π(θ) is approximated on a discrete grid of points, and the integral in (12) is computed using

the trapezoid rule over this grid.

The key advantages of predictive recursion are its speed and its flexibility. Moreover,

Tokdar et al. (2009) derive conditions on the weights γ[i] that lead to almost-sure weak

convergence of the PR estimate to the true mixing distribution. They also show that,

when the mixture model is mis-specified, the final estimate converges in total variation

to the mixing density that minimizes the Kullback-Leibler divergence to the truth. The

conditions on the weights γ[i] necessary to ensure these results are satisfied by γ[i] = (i+1)−a,

20



a ∈ (2/3, 1). We use the default value a = 0.67 recommended by Tokdar et al. (2009).

Algorithm 2 describes the steps of predictive recursion in detail, including a clear sep-

aration of the continuous and discrete components of the mixture distribution Ψ. In our

implementation, we pass through the data 10 times, randomizing the sweep order in each

pass. This yields stable estimates that are relatively insensitive to the order in which the

data points are processed, and is consistent with the practice of other authors who have

studied predictive recursion (Newton, 2002; Tokdar et al., 2009; Martin and Tokdar, 2012).

B Details of the fully Bayes method

Our implementation of the fully Bayes FDR regression model in (9) assumes that π(θ) is a

K-component discrete mixture of Gaussians, parametrized by a set of component weights

ηk, means µk and variances τ2k .

Let hi be the binary indicator of whether zi is signal or noise, let β denote the regression

vector, and let

c(xi) =
1

1 + e−x
T
i β

.

We assume the conditionally conjugate priors

β ∼ N(b0, B0)

µk ∼ N(0, vµ)

τ2k ∼ IG(a/2, b/2)

(η1, . . . , ηK) ∼ Dirichlet(α) .

Under these priors, the full conditionals needed to implement a Gibbs sampler are as follows.

To lighten the notation, a dash (—) is used to denote “all variables not otherwise named.”

Our simulation studies use the prior parameters b0 = 0, B0 = 100I, vµ = 100, a = b = 1,

and α = (1, . . . , 1).

To update hi, note that, from standard results on Gaussian mixtures, the conditional

predictive density under the alternative is

f1(zi |—) =

K∑
k=1

N(zi | µk, τ2k + σ2) .

Thus to draw hi, we sample from the Bernoulli distribution

(hi |—) ∼

{
1 with probability wi
0 otherwise,

where

wi =
c(xi) · f1(zi |—)

c(xi) · f1(zi |—) + {1− c(xi)} · f0(zi)
.

Conditional upon hi, the regression coefficients β can be updated in two stages using

the Polya-Gamma latent-variable scheme. First, draw auxiliary variables ωi from a Polya-
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Gamma distribution as

(ωi |—) ∼ PG(1, xTi β) ,

using the method of Polson et al. (2013), and implemented in Windle et al. (2014). Let

Ω = diag(ω1, . . . , ωn) and κ = (h1 − 1/2, . . . , hn − 1/2). Use these to update β as

(β |—) ∼ N(mβ, Vβ) ,

where

V −1β = XTΩX +B−10

mβ = V −1β (XTκ+B−10 b0) .

Given the zi corresponding to signals (hi = 1), the mixture-model weights, means, and

variances involve straightforward conjugate updates, and are described in many standard

textbooks on Bayesian analysis. Thus we do not include them here; see, for example,

Chapter 22 of Gelman et al. (2013).
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