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Jeffreys is one of the major figures in the history of statistics, and Theory

of Probability is his chief work on the subject. It is wonderful that Robert,
Chopin, and Rousseau (RCR) have devoted so much effort to pouring through
the book. Their insights will be appreciated by all future readers.

The two elements of Bayesian analysis most strongly attributed to Jef-
freys are Bayes factors and the selection of priors by formal rules. My own
understanding of these subjects was embedded in a pair of reviews roughly
15 years ago (Kass and Raftery, 1995; Kass and Wasserman, 1996). Now,
however, my priorities have evolved—I have spent much of the past 10 years
worrying about the application of statistics to problems in neuroscience, and
trying to identify the most important lessons from our discipline that should
be passed on to budding data analysts. I would like to offer a few comments
on Jeffreys’s legacy from this current perspective. Or, perhaps my aim is
better communicated by asking, How should our legacy be informed by Jef-
freys’s legacy? Before getting to this high-level question I would like to make
one technical remark.
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Geometry

It is worth noting Jeffreys’s clear geometrical thinking in his choice of gen-
eral prior, discussed at the beginning of RCR’s Section 4.7. The lurking
differential geometry is subtle, as he says only that Hellinger distance and
Kullback-Leibler divergence “have the form of the square of an element of
distance in curvilinear coordinates,” but, in addition, his notation gik for the
(i, k) element of the Fisher information matrix is the standard notation of his
day for the elements of the matrix representation for a Riemannian metric.
It was obvious that the Riemannian natural volume element—the determi-
nant of the matrix representation of the metric—would be invariant and, as
argued in Kass (1989), this provides a bit of intuition. In addition, basic to
Jeffreys’s treatment of Bayes factors was his use of orthogonal parameters
(see Section 5.01 of Theory of Probability and Section 6.1 of RCR)—which
are “orthogonal” in the sense of differential geometry. Furthermore, his use
of his general prior for Bayes factors, discussed in RCR Section 6.4, is again
intelligible as a prior (approximately) on the resulting Riemannian distance
(the “information distance” discussed in Kass (1989)). I have always assumed
this was an important part of Jeffreys’s thought process.

The Bayesian Engine

As I look back again, now, on Theory of Probability I find four particularly
striking features.

First, it treated a wide variety of problems, many of which continue to be
of interest. (A list of a dozen such problems appeared in Kass (1991) as part
of a special issue of Chance devoted to the 100th anniversary of Jeffreys’s
birth.) In this integration of theory and practice it became a model text.
Indeed, in the intervening years there has been an unfortunate bifurcation of
theory and practice, so that theoretical texts rarely give the kind of attention
to practical problems that Jeffreys did.

Second, it relied on first-order approximation, via Laplace’s method, es-
pecially to center the posterior at the MLE (though modern applications
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often use the posterior mode). This is noteworthy, in part, because it played
a fundamental role in his views on selecting priors. Jeffreys admitted the
choice of prior was somewhat arbitrary, but he pointed out that asymptotic
considerations made this degree of arbitrariness a rather minor practical dif-
ficulty. Over the years there has been some misunderstanding of Jeffreys’
point of view because it changed over time in response to critics—this is one
reason it is worth examining the multiple editions of his book. (See Kass
and Wasserman, 1995, Section 2.) Furthermore, we see in Jeffreys’s use of
Laplace’s method the germs of Bayesian computation: he recognized, more
clearly than many subsequent researchers, who were concerned with exact
results, how Bayes’s theorem could be applied in a wide range of analyti-
cally intractable problems. And, of course, first-order asymptotics brought
Jeffreys’s methods into close agreement with Fisher’s. In the preface of the
first edition of Theory of Probability Jeffreys stated, “There is, on the whole,
a very good agreement with the recommendations made in statistical prac-
tice.” In my view it is worth emphasizing the use of first-order asymptotics
because much elaborate, painstaking statistical work ends up being useful in
scientific inference mainly in its ability to provide a well-founded estimate
and standard error. In contemplating the practical value of his treatise, Jef-
freys recognized this as well when he said, in the preface to its third edition,
“There is a decided improvement in the willingness of physicists to estimate
uncertainties of their results properly, and I suppose that I can claim some
of the credit for this.”

A third striking high-level feature of Theory of Probability is its cham-
pioning of posterior probabilities of hypotheses (Bayes factors), which made
a huge contribution to epistemology. Emanating from his early work with
Dorothy Wrinch, this was Jeffreys’s main motivation for writing the book.
In the preface to the first edition he wrote,

In opposition to the statistical school, [physicists] and some other
scientists are liable to say that a hypothesis is definitely proved by
observation, which is certainly a logical fallacy; most statisticians
appear to regard observations as a basis for possibly rejecting hy-
potheses, but in no case for supporting them. The latter attitude,
if adopted consistently, would reduce all inductive inference to
guesswork; the former, if adopted consistently, would make it im-
posssible ever to alter the hypotheses, however badly they agreed
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with new evidence.... In the present book I ... maintain that the
ordinary common-sense notion of probability is capable of pre-
cise and consistent treatment when once an adequate language
is provided for it. It leads to the results that a precisely stated
hypothesis may attain either a high or a negligible probability as
a result of observational data.

In showing the world the importance of Bayes’ Theorem, Jeffreys succeeded
spectacularly well. The notion that Bayes’ Theorem can describe, with beau-
tiful brevity, the way we incorporate information to gain knowledge is very
widely accepted—even by those, within and outside of statistics, who are
not very fond of Bayesian statistical methods in practice. Laplace made an
important start, but Jeffreys took the argument much further by showing
how Bayes’ Theorem may be connected with the fundamental aspirations of
science.

Jeffreys’s observations opened the door to a unification of epistemology
with scientific inference via statistical methodology. This was his great goal,
and it has remained a goal of Bayesian “true believers” ever since, even
for those who have discarded parts of Jeffreys’s philosophy and replaced it
with subjectivist foundations. There is an undeniable allure of the power
and simplicity of the Bayesian approach—I see it in neuroscience as well as
statistics—but, in my opinion, despite all its spendor, the Bayesian approach
has not realized the goal of unifying statistical inference, nor is it likely to
do so in the forseeable future.

There are many reasons for the failure of the Bayesian grand scheme—in
the face of all the Bayesian successes—but one important difficulty is the
discrepancy between the conceptual, epistemological use of posterior proba-
bilities and their use in practice. In practice, posterior probabilities are used
for model selection (e.g, in reversible jump MCMC) and classification, but
they are almost never used in the manner Jeffreys emphasized, namely, to
provide evidence in favor of scientific hypotheses. Frequentist significance
testing (via bootstrap and permutation tests) is pretty easy, even in rela-
tively complicated situations. Bayesian testing, however, is in one respect
difficult even setting aside computational issues: although (as reviewed in
Kass and Raftery, 1995) Bayes factors are generally not sensitive to priors on
suitably-defined nuisance parameters (“null orthogonal” parameters in the
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sense of Kass (1989)), they remain sensitive—to first order—to the choice of
prior on the parameter being tested. This implies that interpretations such
as Jeffreys’s, reported by RCR, are contaminated by a constant that does
not go away asymptotically. Indeed, this is the reason for the large range of
values within Jeffreys’s interpretive categories. One may see this as a virtue
of the Bayesian approach, that its very ambiguity provides a more thorough
(“honest”) assessment of evidence, but it does impose a burden on those who
wish to make scientific inferences. In some applied situations, the evidence
may be “decisive” over a wide enough range of priors to be convincing, and
it is possible that continuing research will eventually bring Bayes factors into
widespread scientific use. I can report, though, that in neuroscience, despite
considerable penetration of Bayesian ideas and Bayesian methods, Bayes fac-
tors for scientific hypothesis testing are essentially non-existent. And I have
yet to find a good application for them, myself.

Nonetheless, despite the apparent over-reach of the Bayesian aspiration
set forth by Jeffreys, these first three components of Theory of Probability

demonstrated constructively the great power of the Bayesian engine. It had a
tremendous influence on the next generation of books, which in turn educated
those who became soldiers in the “Bayesian revolution” during the 1990s.

Decision Theory

Theory of Probability articulated only one of the two crucial elements in the
emergence of modern Bayesian analysis, in statistics and throughout science:
Bayes’ Theorem as an engine for scientific inference. The second element,
the optimality of Bayesian procedures, including especially the optimality
of Bayes classifiers, had to wait for Wald (and then others such as Savage
and Raiffa and Schlaiffer). It is impossible to sing the praises of Theory

of Probability without emphasizing the continuing importance of optimality.
As RCR point out, Jeffreys did mention the performance of methods, and in
fact noted the optimality of the Bayes factor in balancing type I and type
II errors, but this appears largely as an afterthought in response to Neyman
and Pearson, rather than as the fundamental motivation that frequentist
optimality subsequently became.
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Statistical Models and Scientific Laws

The fourth feature of Theory of Probability that remains, at least to me, espe-
cially important is its identification of scientific laws with statistical models.
Jeffreys put it this way:

A physical law is not an exact prediction, but a statement of the
relative probabilities of variations of different amounts.

This passage appeared in the first edition of the book, and was italicized in
the second and third editions. The point of view is echoed throughout Theory

of Probability and it stands in contrast to anything declared by Fisher.

I see this as crucially important to our contemporary situation. In a recent
article, Emery Brown and I (Brown and Kass, 2009) noted our disgruntlement
with much data analysis we have seen in neuroscience. We put it this way:

We have seen many highly quantitative researchers trained in
physics and engineering, but not statistics, apply sophisticated
techniques to analyze their data. These are often appropriate,
and sometimes inventive and interesting. In the course of perus-
ing many, many articles over the years, however, we have found
ourselves critical of much published work. Starting with vague
intuitions, particular algorithms are concocted and applied, from
which strong scientific statements are made. Our reaction is too
frequently negative: we are dubious of the value of the approach,
believing alternatives to be much preferable; or we may con-
cede that a particular method might possibly be a good one,
but the authors have done nothing to indicate that it performs
well. In specific settings, we often come to the opinion that the
science would advance more quickly if the problems were for-
mulated differently—formulated in a manner more familiar to
trained statisticians.

This led us to consider what statistical training brings to the table, and we
articulated a succinct answer in the form of a pair of dogmas of modern
statistical thinking:
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1. Statistical models of regularity and variability in data are used to ex-
press knowledge and uncertainty about a signal in the presence of noise,
via inductive reasoning.

2. Statistical methods may be analyzed to determine how well they are
likely to perform.

The claim was not that these two things describe what statisticians do, but
rather that they characterize the way they think. The implication, and the
main subject of that article, was that we as a profession should conscien-
tiously emphasize these points in our teaching and curriculum development.
Here, I would like to add that the first item, stressing statistical models, is
central in Theory of Probability. Our modern notion of statistical model is
much broader than that of Jeffreys, and owes much to Fisher. For example,
statistical models are used in bootstrap and permutation tests, as well as a
host of nonparametric inference and prediction methods. However, the point
that statistical models drive the process remains at the essence of our disci-
pline. (For interesting related remarks see Cox, 2001, and Efron, 2001.) To
me, this is the most fundamental message of the Theory of Probability.

On the other hand, we can’t neglect the the second item above, per-
formance of methods. This is equally important to our discipline—yet it is
largely absent from Theory of Probability (and crucial aspects are also absent
from Fisher).

On Re-Reading Jeffreys

Because of Jeffreys’s emphasis on the connection between scientific laws and
statistical models, re-reading Theory of Probability always leaves me with a
burning question: What is the scientific status of a statistical model? That is,
in using a statistical model, to what extent are we making scientific claims?

This foundational issue, at once philosophical and practical, has received
considerable discussion over the years, and deserves continued attention.
Lehmann and Cox, in special lectures and articles, both pointed out that
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the extent to which a model is “explanatory” or “empirical” depends on con-
text (Lehmann (1990); Cox (1990)), and Lehmann cited Kruskal and Neyman
in saying the distinction is not rigid: “[These descriptions] represent some-
what extreme points of a continuum.” Freedman repeatedly criticized claims
based on statistical models because he felt they were empirical in nature yet
were used inappropriately for explanation (e.g., Freedman and Zeisel, 1988,
Statistical Science). The nature of statistical models is closely related to the
nature of scientific models (or theories), which are often regarded as either
“real” or “instrumental” (see Stanford, 2006). It is worth asking whether,
and how, statistical models are essentially different than other kinds of sci-
entific models.

In discussing the connection between statistical models and scientific laws,
some of Jeffreys’s favorite examples are chosen for their rhetorical value,
such as gravitation. Such nice clean examples where scientific theories are
extremely precise are, however, quite rare. Certainly in neuroscience the
“theories,” even when stated mathematically, are supposed to be provide
only rough approximations to reality. The same can be argued in principle
in physics, but in the biological realm the “rough approximation” is very
rough.

Perhaps all models are similar in their attempt to describe the world, but
we in statistics are conscious of their shortcomings, especially when they are
statistical models. And perhaps contributions can come from the quintessen-
tial statistical attitude, “All models are wrong, but some are useful” (Box,
1979), implemented by stressing essential features captured by models that
do represent scientific claims, from inessential features that do not.

In any case, as RCR so thoroughly demonstrate, Theory of Probability is
full of weighty material. Reading it from a contemporary perspective opens
up all kinds of questions; questions of detail, and questions about the nature
of our discipline. One thing is for sure: it is a landmark in the history of
statistics. Reading it helps us better understand the conceptual development
of our subject.
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