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Abstract

We present methods for justifying heuristic derivations of asymptotic expan-
sions for predictive densities, odds factors, marginal posterior densities, and posterior
moments given by various authors. In applications, an observed sample is imbed-
ded in an infinite sequence to which an expansion is applied. We therefore begin
by specifying what constitutes a well-behaved sequence using an approach similar to
that of Chen (1985). We then go on to give conditions under which sequences are
well-behaved with probability one. The latter results are closely related to those of
Johnson (1970).
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1. Introduction

Laplace’s method for the asymptotic evaluation of integrals (Laplace, 1847) is a
basic technique of mathematical analysis (described, for instance, in Erdelyi, 1956),
which has been used frequently in statistical theory. In Bayesian inference Laplace’s
method has been used by various authors to derive approximate posterior expecta-
tions and marginal densities, predictive densities, and Bayes factors. The purpose
of the }Sresent paper is to present methods for justifying these approximations. Qur
approach is similar to that used by Chen (1985) in discussing asymptotic posterior
Normality, and our results are closely related to those of Johnson (1970). For addi-
tional references and discussion, with emphasis on the role of asymptotic expansions
in interactive data analysis, see Kass, Tierney, and Kadane (1988).

The primary problem we concern ourselves with is that of approximating the

expectation of a function g(#), where § is a parameter vector having a posterior




i
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probability density based on a sample of n observations. The posterior density will
be proportional to a likelihood function L = Ly and a prior density 7 so that the
expectation we seek to evaluate asymptotically will have the form

_ Jg(8)L(8)m(6)db
E9(9) = =T T@)m(0)as

(1.1)

If the likelihood function is well-behaved, it will have a dominant peak at
its maximum. Laplace’s method will then be suitable for application to both the

numerator and denominator of (1.1): each may be written in the form
I= /b(a) exp[—nhn(6)]dd (1.2)

where —h, has a maximum at a point é and b and h = h, may be expanded in a
Taylor series about §. The method consists of approximating the integrand by the

product of a low-order polynomial and the factor
n - n
exp{—5 Thij(6: - 8:)(8; — ;)]

where h;; is the (i, 7)-component of the Hessian of h at g; the resulting integral is
then evaluated in terms of the moments of a multivariate Normal distribution.

Note that there are infinitely many choices for the functions b and h in any partic-
ular application. For example, in writing the denominator of (1.1) in the form of (1.2),
two obvious choices for A are hn(8) = n~? log[L(6)] and hn(8) = n™" log[L(6)m(8)],
which determine € to be, respectiifely, the MLE and the posterior mode. Tierney
and Kadane (1986) used the latter in the denominator and then, assuming g{8) was
positive, took hn{8) = n~!log{g(8)L(#)n(6)] in the numerator. They showed that for
this pair of choices, which we will call fully ezponential, first-order approximations in
cach of the numerator and denominator of (1.1), having error of order O(rn~!), lead
to a second-order approximation of the ratio, having error of order O(n~?). This may
be contrasted with the methods of Lindley (1961, 1980) and Mosteller and Wallace
(1964), in which k was the same function in both numerator and denominator of
(1.1), and which involved third derivative terms in the second-order approximations.

In a recent paper, Tierney, Kass, and Kadane (1989b) obtained a second-order
expansion of the expectation of a general function g(#) (which need not be positive),
by applying the fully exponential method to approximate the moment generating
function E(exp[sg(8)]) and then differentiating. They showed that this expansion
is formally equivalent to the one used by Lindley and Mosteller and Wallace, while
maintaining the computational simplicity of the fully exponential method for positive

functions.
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The arguments given by many authors who have applied Laplace’s method to the
calculation of features of posterior distributions have usually been heuristic. They
have essentially relied on two presumptions: first, the well-known conditions for the
rigorous justification of Laplace’s method in producing enalytical expansions (see
Erdelyi, 1956) may be replaced by suitable extensions to cover the cases of interest in
statistics; that is, for well-behaved sequences of data, the posterior distribution will
be sufficiently well-behaved that Laplace’s method will apply. Second, under certain
general conditions, these well-behaved data sequences will be the rule rather than the
exception in a stochastic sense. Using arguments related to those of Le Cam (1933),
Johnson (1967, 1970) effectively showed that in certain cases these presumptions are
correct, by provi&iug a set of conditions under which the expansions will be valid with
probability one. Johnson treated the i.i.d. case in detail, and noted how his results
could be extended to cover the Markov case. (See also Johnson and Ladalla, 1979,
who treated multiparameter problems, and Ghosh, Sinha, and Joshi, 1982, Joshi,
1984, and Bickel, Gétze, and van Zwet (1985) who provided rigorous treatments of
uniform expansions. ) '

Our approach is somewhat different than Johnson’s in that we explicitly separate
the analytical and stochastic parts of the problem. From the Bayesian point of view
this seems desirable since, in applications, the use of Laplace’s method effectively
imbeds the gtven set of observations into an infinite sequence to which the method
applies. We state sufficient conditions on the behavior of the sequence of loglikelihood
functions for validity of analytical expansions, and call a sequence of loglikelihood
functions satisfying these condifions Laplace regular. In linear regression, Laplace
regularity becomes an assumption on the sequence of design matrices and residual
vectors: the eigenvalues of XTX/n must be bounded and bounded away from zero,
and &, must be bounded away from zero. No probability statements are required.
We then go on to consider the family of sampling densities constituting the model and
provide conditions to guarantee that Laplace regularity of the loglikelihood functions
will hold with probability one. When a model satisfies these conditions we refer to
it as a Laplace regular model. In linear regression, the model is Laplace regular if
the eigenvalues of X7 X/n are bounded and bounded away from zero. It is apparent
from an examination of Johnson's arguments that demonstrating Laplace regularity
of a model is essentially what is needed in extending his results. We have not tried
to establish a very general theorem guaranteeing Laplace regularity of stochastic
process models, but instead intend Laplace regularity to be verified for interesting
special families as the need arises in practice. |

We treat second-order approximations, that is, expansions that incorporate the

first correction term beyond the MLE or modal approximation for expectations and

U
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the Normal approximation for marginal densities. Higher-order theory is ana.logous.l
Qur analytical results are presented in section 2, and our results relating Laplace
regularity of models to Laplace regularity of sequences of loglikelihood functions are
given in section 3.

We should emphasize the technical nature of this work on two accounts. First,
although our point of view is Bayesian, our results may be useful in non-Bayesian
‘theory as well. Second, to say that an expansion is valid asymptotically is not to
say that it provides a good approximation in any particular instance. Although
these expansions have been shown to be quite useful (in the references cited by Kass,
Tierney, and Kadane, 1988), it is not hard to construct finite-sample examples in
which the approximations perform poorly. Numerical techniques including Gaussian
quadrature and Monte Carlo remain essential alternatives to asymptotic methods in
practical work. See Naylor and Smith (1982) and Smith et al. (1985) for discussion
of these. The choice of parameterization in which Laplace’s method 1s applied is
also an important practical concern, as shown by the examples in Tierney, Kass,
and Kadane {1988), and Achcar and Smith (1989). Alternative expansions, based on
Pearson family kernels that replacé the Normal kernel of Laplace’s method, have been

shown by Morris (1988) to offer improvements in many one-parameter problems.

2. Analytical Expansions

Suppose © is an open subset of R™,{hn:n=1,2,...} is asequence of six-times
continuously differentiable real functions on ©, having local minima {§ = 6, :n=
1,2,...}, and b is a four-times continuously differentiable real function on ©. We use
Bs(8) to denote the open ball of radius & centered at §. The Hessian of h = hy at ¢
will be denoted by D?h[f), and its (%, j }-component will be written either as 8;h(0]
or hi; while the components of its inverse will be written . |

The pair ({kn},b) will be said to satisfy the analytical assumptions for Laplace’s
method if there exist positive numbers €, M and 7, and an integer no such that
n > ng implies

@) for all § € Be(f) and all 1 < j1, -.nja S ™ with 0 < d < 6,

| By - - -ja h:,[ﬁ] < M;

(i) det(Dhald]) > m

and the integral in (1.2) exists and is finite, and
(iis) for all § for which 0 < 6 <&, Bs(6) € © and

(det(nD2ha[6])]*/2 - je e b(8) expl—n(Ba(8) — ha(F))]d8 = O(n™").
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THEOREM 1: If({hn},b) satisfy the analytical assumptions for Laplace’s method
then

f 5(8) exp|—nh(6)]d8 = (2x)™/? [det(nD?R)] "2 exp[—nh(f)]
(=)

1 (1_. .. 1
. (b(ﬂ) + - {§Eh”b;,‘ - Ezhijkbsﬂ?jka

(2.1)

o
+ = 00) Dhijkhars iijkgrs

1. .
- 5O Rt | +0())

- where y;-‘j &, and ,u?jqus are the fourth and sixth central moments of a multivariate

Normal distribution having covariance matrix (D?h)™!, ie.,

”gjks = Gij0ks T Oik0js + TisTjk
P’?jqua = 0ij0kq0rs T Oij0krOgs + TijOksTqr
+ Oik0jg0rs + OikTjrOgs + TikTjs0qr
+ 0iq0jk0rs + 0igOjrTks + Tig0js0kr
-+ Tir0jhTyqs + TirTjq0ks 4 TirTjaTkq

+ 050 jkOqr + 0is0 340 ke + Tis0irTkg

where o;; = h'J and all derivatives b,, etc., are evaluated at §.

PROOF': For simplicity, we treat the case m = 1, the general case involving obvious
modifications. Let § be the maximum of —h,, let u = n!/ (6 - 8) so that for a given
u, (8 — 9)F = (n=Y2y)* -—-@(n_k/z), and consider the expansion of the integrand
b(8) exp[—nh,(8)] about § that includes terms of order greater than O(n~2). These
terms involve the cubic expansion of b, the quadratic expansion of exp{—z], and the

quintic expansion of hy, as follows. We have

5
nk(8) = {nh(8)} + { %h"(é)uz} + {Z(n“-?)/?k!)-lh(“(é)uk} + ro(w)

k=3

where r,(u) is bounded over B_,(é) by a polynomial in u having coefficients that are
of order O(n~2). Applying the expansion of exp[—z] to the third bracketed term
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above, and expanding b, we get

b(6) expl—nh(6)} = {expl—nh(6)]) {exp[-%h"(é)uﬂ}
. {1 - ln'llzh(s)(é)ua + —1—1@—1[11.(3)(@)]2&6 - —}—n"lh("‘)(é)u“
6 72 24

1 _ap2p() a5 o+ L =32 BN GV (BT 5
—n RO’ + oon R (G (@)u” + Rya(6,0)

: {b(é) + 0= 28 (B)u + %n"lb"(é)tﬁ

+%n"3/25(3)(9)u3 +R2n(99§)}

‘ (2.2)
where R,-n(B,é) = O(n~?) uniformly on B.(6), j=1,2. A heuristic argument would
conclude by using df = n—1/2dy, and noting that the odd moments of a Normal
~ distribution vanish so that formal integration of (2.2) would yield (2.1).

Let us rewrite (2.2) as
48 esoln(@) = {explnh D) {expi- @ f{1(0.0) + Ba0.D)

where Rn(ﬂ,é) is the sum of all terms involving Rin, Ran, or v’ with s > 7. This
expansion holds (for n > ng) on & neighborhood Bs(6) with § < . Condition (iii)
reduces consideration to the integral of 5(6) exp[—nh(8)] over Bs(8), on which region
expansion (2.2) holds; there are thus two integrals to evaluate, one involving I, and
one involving R,.

The integral of {exp[—.%h"(é)uz]}fn(ﬂ, 8) over B;(8) is evaluated by first noting
that on changing variables from 6 to u the domain of integration becomes 'U.(Bg(é)) =
Bj(m(0) where §(n) = n1/2§. Since this domain is expanding at the rate O(n1/?),
and I, is a polynomial in u, which is being integrated against a Normal density in u,
the replacement of this domain by the whole real line incurs an error of exponentially
decreasing order. Using df = n—Y2du, writing p* = 3[h"(8)]? and pe = 15["(8)] 3
as the fourth and sixth central moments of a Normal distribution having precision
h"(8), and noting that the odd moments vanish then yields the right-hémd side of
(2.1) as the integral of {exp[—}R(6)]} - {exp|—L k" (0)u?]} - In(6,6) over Bs(6).

The terms comprising R, may be represented explicitly using the mean value

form of the remainders in terms of higher derivatives of b and h evaluated at points
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between ¢ and 6, e.g., one such term is (1/120)n"2A)(£)u®, where £ = £(u) is
 between 6 and 6; it is one piece of the error term appearing as Rm(ﬂ,é). Now
K@) < M on Bsd) implies |[exp{~3r"(B)u’}n"2hO(E)usdu] <
Mn=? [exp{-3h"(f)u?}uldu = O(n~?) (the integrals being taken over Bj()(0)
where 8(n) = n!/2§). The other terms are similar. Thus, the integral of
{exp[—nh(8)]} - {exp[—1A"(8)u?]} - Ru(8,6) over Bs(f) is of order O(n™?). o

Now suppose —nh, is the log of a posterior density. Our conditions (i)-(iii)
are closely related to those of Chen (1985). Chen assumes © = R™. Then (iii)
with b = 1 and the right-hand side being o(1)} becomes Chen’s condition (C3). It
follows from Chen’s Theorem 2.1 that under (i) and (ii) this condition is necessary
and sufficient for asymptotic posterior Normality. To obtain an expansion of the
expectation (1.1) we need only assume that both ({h,},7) and ({h,},g7) satisfy
the analytical assumptions for Laplace’s method, where —nh, is the loglikelihood
function. In applications, however, it is often easier to verify an alternative condition,
* which is stronger than condition (iii) when b = 1:
(iii') for all § for which 0 < § < ¢, Bs(f) € © and

lim sup sup{h,(8) — hn(8) : 6 € © — Bs(§)} < 0.

n-—r 00 a

An additional convenience of this condition is that we will be able to treat at

once the posterior expectations of all four-times continuously differentiable functions

g based on four-times continuously differentiable priors 7. When a sequence of log-

likelihood functions —nh,(8) = £,(8) = log Ln(f) satisfies conditons (i}, (ii), and
(ili') we will say it is Laplace regular.

EXAMPLE: Linear regression. The Normal linear model is ¥; = zT f +¢; where ¢;

are i.i.d. Normal(0,¢?), 8 is an unknown vector in R? and z; is a given vector in R?,

fori=1,2, ...,n. When the vectors z{, ..., zI are collected into a matrix X,, the

loglikelihood function based on y = (y1, ...,¥.) becomes

n

€6,9) - B, 8) = —553 | Xu(B = B) I =3 (62 ~1—log (&2))

g o2

with § the least-squares estimator and 6> =n"" || y ~ X8 |’. Let Ang and Anm be
the largest and smallest eigenvalues of n™' X T X,. From the inequality logu < u—1,
which holds for all u > 0, condition (iii’) of Laplace regularity holds if there exists
A > 0 such that for all sufficiently large n, A < ¢, and for all 6 > 0

sup{~ | Xa(8 = B) I": 8 € Bu(B)"} < 0.

e —

[ S
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The latter condition, in turn, is satisfied if there exists ¢ > 0 such that for all
sufficiently large 7, @ < Anm. (In the nonsingular case, the condition (XIX,)t—0
is necessary and sufficient for consistency of 3 under the much weaker assumption
that ¢; are i.i.d. with mean zero and variance ¢? < oo see Lai, Robbins, and Wei,
1978.) Condition (i) requires, in addition, that there exist b < co such that, for all
sufficiently large n, An; < b. Condition (ii) is immediate. o

Before stating our theorems for Laplace-regular sequences, we first present a
lermma which will be needed and a corollary which is of some interest on its own. We
let y™ = (y1,...,Yn) denote the sample on which the loglikelihood £,, is based.

LEMMA 2: Suppose {£,} is a Laplace-regular sequence of loglikelihood functions,
x is a four-times continuously differentiable positive real function on ©, and for some
nonnegative integer ng the posterior P{- | y(n0)} based on y™ and the prior «
exists (i.e., the integral of exp{€n, }n is finite); then, with ¢ given in the definition of
Laplace regularity, for any § for which 0 < § < ¢, there exists 2 positive number ¢,
such that for all sufficiently large n,

f  exp{£a(6) — £a(8)}7(0)d8 < exp{—ncy). (2.3)
©—-Bs(&)

COROLLARY 3: Under the conditions of Lemma 2, for any é for which 0 < 6§ < g,

there exists a positive number c¢; such that for all sufficiently large n,

P(© - Bs(8) | y'™) < exp{-ncr}. (2.4)

PROOFS: Suppose first that = is a proper prior (i.e., it integrates to one); then, by
condition (iii’), there exists ¢; > 0 such that (2.3) holds. Now note that Theorem
1 may be applied with h, = —n~'4, and b = n. This provides the normalizing

constant for the posterior: retaining only the first term in the expansion, we have
f exp{€n(8) — £a(@)}7(6)d0 = (27)™/2[det(~D*a(9))]7/2x(8) - {1+ Oa™)}.
e

Combining this with (2.3), we obtain (2.4) for the case in which = is proper.

The general case is treated by applying the above argument with the prior
7 replaced by the posterior density based on y(®) (and 7). This replacement is
possible because condition (iii’) of Laplace regularity also holds when applied to
the “loglikelihood” £, n,(8) = log p(yno+1, voos¥n | ¥*9,8). This is so because
lim sup, _. o 5P {7 [€no (8) — £no(8)] : 6 € © —Bs(6)} = 0. @
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We now present the main results of this section, establishing second-order
approximations to the posterior expectation of a real function ¢ on ©: first in a
standard form, then in a fully ecponential form used by Tierney and Kadane (1986);
finally we give the basic approximation for a marginal density.

Given a prior 7, loglikelihood ¢, positive function v, and real function g we
define h, and b by ~nh, = £, +logy and b = n/y. We then have

[ 9(8)6(8) exp[—nhn(8)|d8
J ¥(8) expl—rihn(8)]d6

E(g(8)) = (2.5)
where the integrals are taken over ©. The a.pproxima.tioﬁ we justify, in the notation

of Theorem 1, is

B(9(0) = 9(0) + 280k { (85/000)) = 72" |+ 3-T55+ 0(n™?). (2)

Approximation (2.6) was used and discussed by Mosteller and Wallace (1964).
The special case v = 1 makes b = = while 6 becomes the MLE, and the choice v = 7
makes b = 1 with § becoming the posterior mode. The latter was used by Lindley
(1961, 1980).

THEQREM 4: Under the conditions of Lemma 2 if, in addition, v is a six-times
and g is a four-times continuously differentiable real function on 8, v is positive, and
the posterior expectation of g, based on y{™) and =, is finite, then the posterior

expectation of g has the expansion (2.6).

PROOF: Letting p(6 | y(*)) be the posterior density based on y(™) and 7, using
(2.3) and arguing as in the proof of Lemma 2, for any § > 0 there is a positive number
¢ such that

/  9(8) exp{€n(8) — £a(8)}7(6)dB < exp{—nc}.
Q—Bs5(8)

Thus, the order of error will be unaffected by replacing © with Bg(é) in the numerator
and denominator of (2.5) and Theorem 1 may be applied to both integrals. o

When ¢ is positive, an alternative to approximating the expectation in (2.5)
using (2.6) is to define —nhy, = ¢, +log 7 and ~nhy = —nh, +logg so that

[ expl—nb2(8)ld8
Texplorhe(8)]d5 @7

E(g(0)) =
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Tierney and Kadane (1986) showed that first-order approximations in the numerator

and denominator of (2.7) yield a second-order approximation

det(2*)'/? exp[-nh(6*)]

-2
T (B expl (D] +0(n™") (2.8)

E(5(0)) =

where £ = (nD?h{f])™! and I* = (nD?R*[§*])77, with § and ¢* maximizing —hq,

and —h},.

THEOREM 5: Approximation of expectations based on the fully exponential
method. Suppose the sequence of loglikelihood functions {€,} is Laplace-regular,
x and g are six times continuously differentiable positive real functions on ©, and for
some nonnegative integer ny the posterior based on y("®) and x exists and the poste-

rior expectation of g is finite; then the posterior expectation of g has the expansion

(2.8).
PROOF: The proof of Theorem 5 is essentially the same as that of Theorem 4. o

_ Suppose now that @ = 0, % Oy, with ©; and O3 being of dimension m; and
mo, 7 is positive, and h, and b are defined by —nh, = £n + log~y and b = 7 /v. The

marginal posterior density of f; becomes.

fez b(gl 3 62) exp[_nh"(al‘! 92)]d92

8, | v™) = 2.9
P01 9™) = T 48, 62) expl—rihin(01, 62)]d91 6 (2:9)
and a first-order approximation is
i 1/2 B ~ -
6 1) = oy SO oLl B0 B0
€ - n
ot(5)1/2 expl-nhn(B)]E(F) 210)

- o)

where & and T(8;) are the inverses of the Hessian matrices of nh, and nhq(61,)
at 6 and (6;,82(61)) with 6 and §,(6:) maximizing —hn and —hal(6: , -} - We write
the marginal posterior mode, i.e., the maximum of p(6y | ¥™) , s 6, . As noted
by Tierney and Kadane (1986), approximation (2.10) holds uniformly on bounded

regions about 6;.

THEOREM 6: Approximation of marginal densities. Suppose the sequence of log-
likelihood functions {€,} is Laplace-regular, © = @, x ©, with ©; and O being open
subsets of R™ and R™ , m and « are six times continuously differentiable positive
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real functions on ©, and for some ng the posterior based on y(™) and 7 exists; then,
with ¢ given in the definition of Laplace regularity, for any 6 for which 0 < § < g,
the marginal posterior density of §; has the expansion (2.10) uniformly for all 8; in

Bé(él):

PROOF: As in the proof of Lemma 2, the denominator of (2.9) may be approx-
imated by the denominator of (2.10) (multiplied by (27)™/?), with multiplicative
error of order O(n~!), which does not depend on #;. For any § < g, Theorem 1
may be applied to approximate the numerator in (2.9) for each 6, € Bs(61). To
obtain uniformity we return to the proof of Theorem 1. Repeating the argument
following (2.2), we pick &* < (g2 — 6%)!/? and then note that ©; may be replaced by
Bg-(ég(ﬂl)) C ©4, and each error incurred in the subsequent steps may be replaced

by its supremum over §; € Bs(6,). o

A more general form of approximation (2.10) is presented by Tierney, Kass, and
Kadane (1989a).

3. Stochastic Expansions

In this section we list assumptions on a family of distributions that guarantee
the sequence of loglikelihood functions will be Laplace regular with probability one.
We then briefly relate our approach to that of Johnson (1970) and to the problem of
guaranteeing consistency of the MLE.

Suppose © is an open subset of R™, (2, A) is a measurable space, P={P:
8 € O} is a family of probability distributions on (£, A), and {Y;:i=1,2,...}isa
stochastic process on (€, A) with the ¥;'s taking values in (¥, B) where } is a subset
of R* and B is the class of Borel subsets of J. Letting Y™ = (Y1,...,Ys,), we will
assume that for all n the n-dimensional distributions of Y (") are dominated by a
o-finite measure, and we will denote & density of V(™) under Py by p(y(™ | 8); we
will denote the loglikelihood function by £, i.e., £x(6) = log p(y‘™ | 8).

The family P will be called Laplace-regular if there exist densities p(y™ | 6)
such that

| (i) for all y(™ and 4, p(y(™ | §) > 0 and for all y(™, £, is six times continuously

differentiable;
(i) for all 6y € © there exist € > 0 and M < oo such that B.(6y) € © and for all

1< j1,y...,54 £ m with d <6, '
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Iimsupm;p{n_l | 8, - --7a£nl6] |: 6 € Be(60)} < M, .

n—o0
with Py, -probability one;
(ii1) for 2ll 8§y € © and some £ > 0,

n—+oo a8

lim sup sup{n ! det(D?£,[6]) : 6 € B.(60)} <0

with Pg,-probability one;
(iv) forall §p € © and all 6 > 0,

limsups%p{n“l [£2(0) — £,(60)] : 6 € © — Bs(6)} < 0

n-—roo
with Pg,-probability one.

THEOREM 7: If a family P is Laplace regular its sequence of loglikelihood func-
tions is Laplace regular with Pg,-probability one, for all 6y.

PROOQF: This is essentially immediate. We need only note that (iv) is a familiar
consistency condition for the MLE, and it entails condition (iii’) of Laplace regularity

for {,. o

EXAMPLE: Linear and nonlinear regression. Consider again the linear
regression setting given in the previous section. The condition that the eigenvalues
of n~XT X, be bounded and bounded away from zero is precisely what is needed
for Laplace regularity of the family.

Suppose instead that Y; = f(z;, ) + &;, with ¢; again being ii.d. Normal(0, a?)
and f being a smooth function of . To check condition (iii') of Laplace regularity
of the sequence of loglikelihood functions we could use

€8,0) - U(B,5) = —=5 B ~ F(z, D) (zisB) — £(20,8)
- n {52 &2
- L0t ) - s 0 - 3 (5 -1-108 (G5 )
<~ By — f(z, B2 B) — f(5:.8))

_ _2_(17-2.2(]‘(2:;,5) - f(:c,-,ﬁ))z

the inequality following from u — 1 > logu, as in the linear regression case.
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Alternatively, Laplace regularity of the family may be checked as follows. Sup-
pose, in addition, that 4 lies in a compact subset B of R?, Da(8,8) =Y, (f(2:, 8)
~ f(z;, B"))? satisfies ‘

(A) n~1D.(B,8") converges uniformly to a continuous function D{G, ') and

D(B,8") = 0 if and only if § = #,
and Dgf = (9, flzs, Bls. .., 08, fzi, B]) satisfies
(B) =1 %, (Dgf)T(Dpf) converges uniformly to a matrix A(f), which is con-
tinuous in # and positive definite,
while forall 1 < 1, ..., 7a <pwith1 <d <6

(C) n~t 0 (95, f). .- (85, f) converges uniformly.

Condition (A) corresponds to conditions (2) and (b) of J ennrich (1969) while (B)
and (C) together correspond to his conditions (c) and (d) when d = 1 or 2. Assuming
these when ¢; are i.i.d. with mean zero and variance o? < o0, Jennrich derived the
asymptotic consistency and Normality of the nonlinear least-squares estimator. From
the proof of Jennrich’s Theorem 6 it may be seen that conditions (A)-(C) imply
Laplace regularity for Normal nonlinear regression models. Alternative conditions
for asymptotic consistency and Normality are given by Wu (1981). o

We conclude by relating our approach to that of Johnson (1970). We have given
Laplace regularity conditions on the family of densities, and have derived asymp-
totic expectations and marginal densities. Our approach easily yields an asymp-
totic approximation to the distribution function as well: the first term gives asymp-
totic Normality, as in the work of LeCam (1953), Walker (1969), and Heyde and
Johnstone (1979). Compare also the discussion of Chen (1985). Johnson (1970) pro-
vides additional conditions primarily to guarantee the requisite tail behavior of our
regularity condition (iv); they are essentially consistency conditions for the MLE. We
now present a result that relates the problem of checking condition (iv) to that of
checking consistency of the MLE.

THEOREM 8: (Laplace regularity in the ii.d. case.} Suppose P = {Pgl) :
§ € ©} is a family of probability measures dominated by a o-finite measure on a
measurable space (¥, B) with Y in R¥, B the Borel sets n J and © an open subset
of R™ , and let {Y;:i=1,2,...} be a sequence of i.i.d. observations from Pgl) with
density p(y | 8) . The family P = P(°) of infinite product measures on (=) | Blo))
is Laplace-regular if the following conditions are satisfied:
(i) 0 # 6' implies PV # P ;
(ii) for all y and 8,p(y | 8) > 0 and for all y, p(y | -) is six times continuously
differentiable;
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(iii) for all 8y, there exist a neighborhood N1(8y) of 6y, a positive integer r, and a
measurable real function M; on the r-fold product space ({7, B("Y such for all
6 € NI(GU):

r=1 “llogp(yi | 6) — logp(y: | 60)] < Mi(y1,---,yr)
=1
and, under Py,, EM1(Y1,..., Y7} < o0 ;
(iv) for all 8y, there exist a neighborhood N(6y) of 8y and a measurable real function
M, on such that for all § € No(6y) and all 1 < 31, ...,5¢ £ m, with d <6,

| a.‘h ERRY ¥ logp(y I 9) I< M2(y)

and, under Py, EM3(Y) < o0 ;

(v) for all 8y,det(D?f[6o]) > O, where f(8) = Ellog p(y | 6o) — logp(y | #)] with the
expectation taken under Py, ;

(vi) for all 8y every sequence of maxima of the loglikelihood function £,, is strongly

consistent.

PROOF: This follows from the strong law of large numbers and Theorem 4.1 of
Perlman (1972), together with a version of Huzurbazar’s Theorem given in Proposi-
tion 4.2 in Perlman (1983), and the accompanying discussion on page 352 of Perlman
(1983; the result used here being applicable in the multiparameter case). ©

REMARKS:

(1) When the integral of p(y | ) may be differentiated twice under the integral sign,
condition (v) becomes positive-definiteness of the Fisher information matrix.

(2) Conditions for consistency of the MLE are discussed at length in Perlman (1972).
(3) It is straightforward to verify Laplace regularity for exponential and curved expo-
nential families. See Kass and Fu (1988). Crawford (1988} has also verified Laplace

regularity for certain mixture models.
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