R. Kass — TSPP NOTES

Bivariate Time Series: Cross-Correlation
and Coherence

Suppose x1, %, ..., 2, and y1,Ys, ..., Y, are sequences of observations
made across time, and the problem is to describe their sequential rela-
tionship. For example, an increase in y; may tend to occur following
some increase or decrease in a linear combination of some of the pre-
ceding x; values. This is the sort of possibility that bivariate time series
analysis aims to describe.

Example See Fig. 10 of Kaminski et al., 2001, Biol. Cybern.; Fig. 2
of Brovelli et al., 2004, PNAS. |

The theoretical framework of such efforts begins, again, with station-
arity. A joint process {(X;,Y;),t € Z} is said to be strictly stationary
if the joint distribution of {(X;,Y;), ..., (X¢in, Yien)} is the same as
that of {(Xs, Ys),. .., (Xsin, Ysun)} for all integers s,t, h. The process
is weakly stationary if each of X; and Y; is weakly stationary with means
and covariance functions px, vx(h) and py, vy (h), and, in addition,
the cross-covariance function

Yxy(s,t) = E((Xs — px)(Y: — py))

depends on s and t only through their difference h = s — ¢, in which
case we write it in the form

xy (h) = E((Xs, — px)(Y: — py)).

Note that yxy (h) = vy x(—h). The cross-correlation function of { (X, Y;) }
1s

h
pxy(h) = v (A)
Ox0Oy
where ox = 1/7x(0) and similarly for Y;.

An important result is the following. Suppose we have
Y, = 08X o+ Wy (1)

where X is stationary and W is stationary with mean zero and variance
o2, independently of X, for all s. Here, ¢ is the lag of Y; behind X;.
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Then
py = E(BXi—o+ W) = Bux

and

vxv(h) = B((Yien — py)(Xe = px))
= E((BXiph-e+ Wi — py)(Xy — pix))
= BE(Xipn—e — px)(Xe — px)) + 0

which gives

Yxy (h) = Byx(h —£). (2)

Thus, the cross-covariance function will look like the autocovariance
function of X;, but shifted by lag ¢. Similarly, the autocorrelation
function will be

/57X(h - é)

pXY(h) = /7§20§( n U{%[/UX
2 3
= (750){ ) px (h).

Bo% + o,

This provides one of the basic intuitions behind much practical use of
cross-correlations: one examines them to look for lead/lag relationships.

The cross-covariance and cross-correlation functions are estimated by
their sample counterparts:

1 n—h

ixy(h) = - Z($t+h —Z)(ye — ¥)

t=1
with yxy(=h) = Jyx(h), and

_ Yxv ()
ox0y

p(h)

A second use of cross-correlation comes from decomposing the cross-
covariance function into its spectral components. The starting point for
the intuition behind this class of methods comes from Figure 1. There,
a pair of phase-shifted cosine functions have a periodic cross-correlation
function. Similarly, if {X;} and {Y;} act somewhat like phase-shifted
quasi-periodic signals, one might expect to see quasi-periodic behavior
in their cross-covariance function. However, the situation is a bit more
subtle than this.
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Figure 1: A pair of phase-shifted cosine functions and their cross-
correlation function.

Recall that for a stationary process {Xy;t € Z}, if

Y hx(h) < oo (3)

h=—o

then there is a spectral density function fx(w) for which

vx(h) = /_21 ™ £y (W) dw (4)
and .
fx()= " yx(h)e ™", (5)

We noted that the DFT of the sample autocovariance function was
equal to the periodogram (which was also equal to the squared magni-
tude of the DFT of the data). Smoothed versions of the DFT of the
sample autocovariance function thus became estimates of the spectral
density.



The bivariate and, more generally, multivariate versions of these basic
results are analogous: if

Z [vxy (h)] < o0

h=—o

then there is a cross-spectral density function fxy(w) for which

vy (h) = / T rivh p () dw (6)

1
2
and

Frv(@) = Y rxy(h)e *mem,

h=—oc0
The cross-spectral density is, in general, complex valued. Because
Yy x(h) = vxy(—h) we have

frx(w) = fxy(w). (7)

An estimate ny(w) of fxy(w) may be obtained by smoothing the DET
of sample covariance function Jxy (h). (The cross-periodogram is the
unsmoothed DFT of 4xy(h).)

A commonly-applied summary of the relationship between {X,;} and
{Y;} is the squared coherence, given by

s | fxv(w)?
P = @) (@)

To gain some interpretation, let us return to (1), generalize it by writing

Yi= > BXin+W, (8)

h=—00

where W, is a stationary white noise process independent of {X,;}, and
consider the theoretical least-squares regession problem of finding the
coefficients {3} that minimize

MSE =FE (YZ — i 5hXt—h> . 9)

h=—o00

In the case of ordinary least squares, where Y = X3 + ¢, geometrical
arguments (discussed earlier) show that the sum of squares is minimized
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when [ makes the residual orthogonal to the fit, i.e., § = ﬁ satisfies
(Y — X3)TX3 =0, and this set of equations (a version of the normal
equations) determines the value of 5. For later use, let us also note

that the residual sum of squares may be written in terms of R? =
IXBI2/IIY][? as

SSerror = [IY 11> = IXBI[* = [[Y (1 = B?). (10)

The MSE in (9) is analogous to SSe..o in (10). Technically, dealing
with stochastic processes requires an extension of the theory presented
earlier: the set of stationary stochastic processes Y = {Y;,t € Z}
(assumed, for simplicity, to have mean zero) with inner product

< XY >= E(X,Y;)

forms an infinite-dimensional vector space (a Hilbert space). However,
the geometrical arguments go through by essentially the same argu-
ments. In particular, the minimum-MSE solution satisfies the orthog-
onality condition

E ((YQ — i 5hXt—h> Xt—s) =0 (11)

h=—o00

for all s € Z. Bringing the expectation inside the summation gives the
analogue to the normal equations:

Z ﬂh”YX(S - h) = ’Vyx(S) (12)

h=—00

for all s € Z. We now decompose this into frequency components. We
define

B(w) = i Be2riwh,

h=—o0

We next use (4) on the left-hand side and (6) on the right-hand side of
(12). For the left-hand side we have

Brrx(s —h) = B [ el f ()
2 :

N

h=—oc0 h=—o0
% 00
_ / 1 Z 6h6—27riwh€27riw3fx (w)dw
“2 h=—00

= /_5 B(w)e?™s fx(w)dw



while on the right-hand side we have

1

Yx(t) = /_§ €™ fy x (w)dw

[NIES

and so, by the uniqueness of the Fourier transform, we get the frequency-
based version of the normal equations

B(w)fx(w) = frx(w). (13)

Let us now find a frequency-based analogue to the expression (10).
Using (11) we may write the MSE as

MSE = E((Yi=> fXi) i)
= w(0) - Zﬂh%{y(—h)

and transforming this expression we get

MSE = fY(W)dW—Zﬁh/ e froy (w)dw

Substituting for B(w) using (13) we have

_ : _ frx (W) fxy (w)
MSE = g fy(w) ) dw
then using (7) and rewriting gives
_ 2 _ | frx(w)[?
MSE= | M= O™
which, finally, produces
MSE = [ fy()(1 = py x (w)?)dw. (14)

1
2

Thus, as an analogue to (10), fy(w)(1 — pyx(w)?) is the w-component
of MSE in the minimum-M SFE fit of ().
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Two more quick observations help with the interpretation of the coher-
ence. First, in (14) MSE > 0 and fy(w) > 0 imply that 0 < pyx(w) <
1 for all w. The second begins with the noise-free case

Yi= Y BnXin

h=—oc0

For simplicity let us assume X; and Y; have mean zero and, as before,

Z |Bi| < oo.

t=—00

Defining B(w) as above, some manipulation shows that (13) again
holds. On the other hand, in discussing linear filters we noted

fr(w) = [BW)|* fx ().
Combining this with (13) we have

| fyx (W)
fx (W) fy(w)
B(w)*fx(w)
fx (W) fy(w)
fr(w)fx(w)
fx (W) fy(w)
for all w. Taking this together with (14) gives the interpretation that

the coherence is a frequency-component measure of linear association
between two theoretical time series.

pyx(w)

1

One additional note. The complex-valued quantity Byx(w) is often
written in polar form:

Byx(&)) = |Byx| exp(—igbyx(w)).

Notice that in the special case Y; = X, + W; we have fyx(w) =
B exp(—2miwh) fx (w) and the phase satisfies the linear function ¢y x (w) =
—2mih.

We now consider data-based evaluation of coherence. The coherence
may be estimated by

Py = A|fXY((AU>|2 '
fx(w) fy(w)

7
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However, the smoothing in this estimation process is crucial. The raw
cross-periodogram [xy (w) satisfies the relationship

[ Ixy (W)[° = Ix(w)Iy(w)

so that plugging the raw periodograms into (15) will always yield the
value 1. This make interpretation of coherence more subtle: it is not
trivial to come up with series zy,...,x, and y,...,y, that have sub-
stantial peaks in their estimated spectral densities, but no substantial
peak, in the corresponding range of frequencies, for their estimated
cross-spectral density.

Here is such an example, starting with a pair of cosines. It involves two
steps (i) phase modulation and (ii) contamination of the cosines by an
AR(1) process.
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Figure 2: A pair of cosines, where the second (blue) has its phase mod-
ulated so that in the middle of the time interval it is in phase with the
other series, but at the ends it drifts to opposite phase. This decreases
the maginitude of the cross-correlation.
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Figure 3: Cross-correlation for two generated series.

Granger Causality

A way of examining the directional dependence among two stationary
processes {X;,t € Z} and {Y;,t € Z} begins by assuming they may
be represented in the form of time-dependent regression. A paper by
Geweke (1982,J. Amer. Statist. Assoc.) spelled this out nicely, based
on earlier work by Granger.

The idea is very simple. In ordinary regression we assess the influence
of a variable (or set of variables) X5 on Y in the presence of another
variable (or set of variables) X by examining the reduction in variance
when we compare the regression of Y on (X;, X3) with the regression
of Y on X; alone. If the variance is reduced sufficiently much, then
we conclude that X, helps explain (predict) Y. Here, we replace Y
with Y}, replace X; with {Y;, s <t} and X, with {X;, s < t}. In other
words, we examine the additional contribution to predicting Y; made
by the past observations of X after accounting for the autocorrelation
in {Y;}. The “causality” part comes when the past of X helps predict
Y; but the past of Y, does not help predict X;.
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Figure 4: Estimated spectral densities and coherence for series in Fig
3.

In Geweke’s notation, suppose

Xe = ) BuXes+ U

s=1

Y, = ) GuYi .+ Wy

s=1

with V(Uy,) = ¥ and V' (Vy;) = T3, and then suppose further that

X = Y EpXi o+ BYi +Uy

s=1 s=1
Y, = Y GoYio+ Y HoXy o+ Vay
s=1 s=1

where now V(Uy;) = X5 and V(V3;) = To. The residual variation in
predicting Y; from the past of Y; is given by 7T} and that in predicting Y;
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Figure 5: Cross-correlation for two generated series.

from the past of Y; together with the past of X; is given by T5. Granger
suggested the strength of “causality” (predictability) be measured by

|71
GC=1—-—.
||

Geweke recommended the modified form

T
2

Geweke also suggested a decomposition of F'x_.y into frequency com-
ponents. That is, he gave an expression for fx_y(w) such that

FX—>Y = [ fXﬁy(u))du).

In applications, the basic procedure is to (i) fit a bivariate AR model
(using, say, AIC to choose the orders of each of the terms); this modifies
the equations above by making them finite-dimensional; then (ii) test
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Figure 6: Estimated spectral densities and coherence for series in Fig
5.

the hypothesis Hys = 0 for all s and also the hypothesis Fy, = 0 for all
s. This tests whether F'x_,y =0 and Fy_,x = 0.

As an illustration, I simulated a bivariate time series of length 1000
using the model

Xt — .5Xt_1 + Ut
Y; = .2}/;_1 + .5Xt_1 ‘l‘ ‘/;

where U, ~ N(0,(.2)?) and V; ~ N(0,(.2)?), independently. T then fit
a linear regression model of the form

=00+ 651Yie1 + 5 Xi1 + &

and, similarly, fit another model of the same form but with the roles of
X and Y reversed.

n=1000
x=arima.sim(list (order=c(1,0,0),ar=.5),sd=.5,n=n)
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Figure 7: Cross-correlation for two generated series.

y=null
y[1]=rnorm(1,0,.2)
for(i in 2:n){

y[i]=.5*x[i-1]+.2*y[i-1] + rnorm(1,0,.2)

}

y.xy=1lm(y[2:n]"x[1: (n-1)]+y[1: (n-1)])
x.xy=Im(x[2:n]"x[1: (n-1)]+y[1: (-1 ])

summary (y.xy)

summary (x.xy)
HAHHAHHBH B HHHHAHHAHH
# OQUTPUT

#

#Call:

#1m(formula = y[2:n]
#

#Residuals:

# Min 1Q

“x[1:(n - D] +yl:@- DD

Median 3Q Max

#-0.605066 -0.132689 0.001135 0.126644 0.657045

#
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Figure 8: Estimated spectral densities and coherence for series in Fig
7.

#Coefficients:

# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -0.001310 0.006223 -0.211 0.833
#x[1:(n - 1)] 0.495680 0.011589 42.773 <2e-16 *x*
#y[1:(m - 1)] 0.191902 0.017811 10.774 <2e-16 *xx*
#

#Call:

#lm(formula = x[2:n] ~ x[1:(n - 1] + y[1:(n - D)

#

#Residuals:

# Min 1Q Median 3Q Max
#-1.766162 -0.336188 -0.009646 0.319320 1.520826

#

#Coefficients:

# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.008571 0.016003 0.536 0.592
#x[1:(n - 1)] 0.508429 0.029802 17.060 <2e-16 *xx*
#y[1:(n - 1)] -0.055286 0.045803 -1.207 0.228
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As expected, the first fit indicates that X;_; provides additional infor-
mation beyond Y;_; in predicting Y;, but Y;_; does not provide addi-
tional information beyond X; ; in predicting X;. This is sometimes
summarized by saying X; is causally related to Y;, but we must keep in
mind that “causal” is used in a predictive, time-directed sense.

This illustration sweeps under the rug the model selection part of the
problem, item (i) mentioned above. In applications this is non-trivial.
It is often handled by assuming the bivariate process follows an AR(p).
This means that we write, say, Z; = (X;, Y;)T and, in the case of AR(1),

Zy=a+®Z,_, + W,
where ® is a 2 x 2 matrix so that we have a pair of equations

Xy = o+ Xp g + @Y + Wy
Yi = oo+ Do Xyg + DYy + Wi

It is straightforward to perform bivariate regression, or ML estimation;
model selection is then often based on AIC. This simplification avoids
separate consideration of the X and Y terms for each response variable,
but of course it comes at the cost of possible lack of fit.

R Code for Figs

# FUNCTION DEFINITIONS
plotl=function(x,y,lwd=2,xlab="t",ylab=" ",...){
plot(x,y,type="1",lwd=1wd,xlab=xlab,ylab=ylab,...)}
phasemod=function(n,p=.2){
nr=floor (n*p/2)
ans=rep(0,n)
F=pbeta(((l:nr)-.5)/nr,5,5)
ans[1:nr]=pixF-pi
ans[(n+1-nr) :n]=pi*F
ans}
# FIG PRODUCTION
t=1:100
cosfn=cos (2*pi*t*.05)
cosfn.ph=cos (2*pi*t*.05+.75)
plotl(t,cosfn)
lines(t,cosfn.ph,type="1",col="blue",lwd=2)
cross=ccf (cosfn,cosfn.ph,plot=FALSE)
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plot(cross$lag,cross$act,type="1",1wd=2,ylab="Cross Cor",xlab="Lag")
# dev.print...

cosfn.phmod2=cos (2*pi*t*.05+phasemod(100,p=.9))
plot(t,cosfn,type="1",1wd=2)
lines(t,cosfn.phmod2,type="1",col="blue",lwd=2)

cross=ccf (cosfn,cosfn.phmod2,plot=FALSE)
plot(cross$lag,cross$act,type="1",1wd=2,ylab="Cross Cor",xlab="Lag")
dev.print(device=postscript,file="cos.crosscor.phmod.ps")

3 through 8

cos.cross=function(a=.2,sigl=.2,sig2=.2){
cosfn=cos (2*pixt*.05)
cosl=axcosfn+arima.sim(list (order=c(1,0,0),ar=.9) ,n=nt,sd=sig2)
cos2=axcosfn+arima.sim(list (order=c(1,0,0),ar=.9) ,n=nt,sd=sig2)
list(cosl=cosl,cos2=cos2)
}
cos.plotl=function(cosl,cos2){
par (mfrow=c(2,1))
plot(t,cosl,type="1",1lwd=2,ylab="",
ylim=c(min(c(cosl,cos2)) ,max(c(cosl,cos2))))
lines(t,cos2,type="1",col="blue",lwd=2)
cross=ccf (cosl,cos2,plot=FALSE)
plot(cross$lag,cross$act,type="1",1wd=2,ylab="Cross Cor",xlab="Lag")
}
cos.plot2=function(cosl,cos2){
par (mfrow=c(2,1))
coher=spec.pgram(cbind(cosl,cos2),spans=c(3,3))
plot (coher$freq, coher$coh,type="1",1wd=2)
}
# FIG PRODUCTION STARTS HERE
nt=500
t=1:nt
# For first pair of figs
out=cos.cross.ph(1,.2,.2)
cos.plotl(out$cosl,out$cos?2)
dev.print (device=postscript,file="cc3.ps")
cos.plot2(out$cosl,out$cos?2)
dev.print (device=postscript,file="coh3.ps")
# For latter two pairs of figs
out=cos.cross.ph(.5,.2,.2)
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cos.plotl(out$cosl,out$cos?2)

dev.print (device=postscript,file="cc3.ps")
cos.plot2(out$cosl,out$cos?2)

dev.print (device=postscript,file="coh3.ps")
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