
R. Kass — TSPP Notes

Bivariate Time Series: Cross-Correlation

and Coherence

Suppose x1, x2, . . . , xn and y1, y2, . . . , yn are sequences of observations
made across time, and the problem is to describe their sequential rela-
tionship. For example, an increase in yt may tend to occur following
some increase or decrease in a linear combination of some of the pre-
ceding xt values. This is the sort of possibility that bivariate time series
analysis aims to describe.

Example See Fig. 10 of Kaminski et al., 2001, Biol. Cybern.; Fig. 2
of Brovelli et al., 2004, PNAS. �

The theoretical framework of such efforts begins, again, with station-
arity. A joint process {(Xt, Yt), t ∈ Z} is said to be strictly stationary
if the joint distribution of {(Xt, Yt), . . . , (Xt+h, Yt+h)} is the same as
that of {(Xs, Ys), . . . , (Xs+h, Ys+h)} for all integers s, t, h. The process
is weakly stationary if each of Xt and Yt is weakly stationary with means
and covariance functions µX , γX(h) and µY , γY (h), and, in addition,
the cross-covariance function

γXY (s, t) = E((Xs − µX)(Yt − µY ))

depends on s and t only through their difference h = s − t, in which
case we write it in the form

γXY (h) = E((Xth
− µX)(Yt − µY )).

Note that γXY (h) = γY X(−h). The cross-correlation function of {(Xt, Yt)}
is

ρXY (h) =
γXY (h)

σXσY

where σX =
√

γX(0) and similarly for Yt.

An important result is the following. Suppose we have

Yt = βXt−` + Wt (1)

where Xt is stationary and Wt is stationary with mean zero and variance
σ2

W
, independently of Xs for all s. Here, ` is the lag of Yt behind Xt.
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Then
µY = E(βXt−` + Wt) = βµX

and

γXY (h) = E((Yt+h − µY )(Xt − µX))

= E((βXt+h−` + Wt − µY )(Xt − µX))

= βE((Xt+h−` − µX)(Xt − µX)) + 0

which gives
γXY (h) = βγX(h − `). (2)

Thus, the cross-covariance function will look like the autocovariance
function of Xt, but shifted by lag `. Similarly, the autocorrelation
function will be

ρXY (h) =
βγX(h − `)

√

β2σ2
X

+ σ2
W

σX

=

(

βσ2
X

βσ2
X

+ σ2
W

)
1

2

ρX(h).

This provides one of the basic intuitions behind much practical use of
cross-correlations: one examines them to look for lead/lag relationships.

The cross-covariance and cross-correlation functions are estimated by
their sample counterparts:

γ̂XY (h) =
1

n

n−h
∑

t=1

(xt+h − x̄)(yt − ȳ)

with γ̂XY (−h) = γ̂Y X(h), and

ρ̂(h) =
γ̂XY (h)

σ̂X σ̂Y

.

A second use of cross-correlation comes from decomposing the cross-
covariance function into its spectral components. The starting point for
the intuition behind this class of methods comes from Figure 1. There,
a pair of phase-shifted cosine functions have a periodic cross-correlation
function. Similarly, if {Xt} and {Yt} act somewhat like phase-shifted
quasi-periodic signals, one might expect to see quasi-periodic behavior
in their cross-covariance function. However, the situation is a bit more
subtle than this.
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Figure 1: A pair of phase-shifted cosine functions and their cross-
correlation function.

Recall that for a stationary process {Xt; t ∈ Z}, if

∞
∑

h=−∞

|γX(h)| < ∞ (3)

then there is a spectral density function fX(ω) for which

γX(h) =

∫ 1

2

−
1

2

e2πiωhfX(ω)dω (4)

and

fX(ω) =

∞
∑

h=−∞

γX(h)e−2πiωh. (5)

We noted that the DFT of the sample autocovariance function was
equal to the periodogram (which was also equal to the squared magni-
tude of the DFT of the data). Smoothed versions of the DFT of the
sample autocovariance function thus became estimates of the spectral
density.
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The bivariate and, more generally, multivariate versions of these basic
results are analogous: if

∞
∑

h=−∞

|γXY (h)| < ∞

then there is a cross-spectral density function fXY (ω) for which

γXY (h) =

∫ 1

2

−
1

2

e2πiωhfXY (ω)dω (6)

and

fXY (ω) =
∞
∑

h=−∞

γXY (h)e−2πiωh.

The cross-spectral density is, in general, complex valued. Because
γY X(h) = γXY (−h) we have

fY X(ω) = fXY (ω). (7)

An estimate f̂XY (ω) of fXY (ω) may be obtained by smoothing the DFT
of sample covariance function γ̂XY (h). (The cross-periodogram is the
unsmoothed DFT of γ̂XY (h).)

A commonly-applied summary of the relationship between {Xt} and
{Yt} is the squared coherence, given by

ρ2
XY

=
|fXY (ω)|2

fX(ω)fY (ω)
.

To gain some interpretation, let us return to (1), generalize it by writing

Yt =

∞
∑

h=−∞

βhXt−h + Wt, (8)

where Wt is a stationary white noise process independent of {Xt}, and
consider the theoretical least-squares regession problem of finding the
coefficients {βh} that minimize

MSE = E

(

Yt −

∞
∑

h=−∞

βhXt−h

)2

. (9)

In the case of ordinary least squares, where Y = Xβ + ε, geometrical
arguments (discussed earlier) show that the sum of squares is minimized
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when β makes the residual orthogonal to the fit, i.e., β = β̂ satisfies
(Y − Xβ)TXβ = 0, and this set of equations (a version of the normal
equations) determines the value of β̂. For later use, let us also note
that the residual sum of squares may be written in terms of R2 =
||Xβ̂||2/||Y ||2 as

SSerror = ||Y ||2 − ||Xβ̂||2 = ||Y ||2(1 − R2). (10)

The MSE in (9) is analogous to SSerror in (10). Technically, dealing
with stochastic processes requires an extension of the theory presented
earlier: the set of stationary stochastic processes Y = {Yt, t ∈ Z}
(assumed, for simplicity, to have mean zero) with inner product

< X, Y >= E(XtYt)

forms an infinite-dimensional vector space (a Hilbert space). However,
the geometrical arguments go through by essentially the same argu-
ments. In particular, the minimum-MSE solution satisfies the orthog-
onality condition

E

((

Yt −
∞
∑

h=−∞

βhXt−h

)

Xt−s

)

= 0 (11)

for all s ∈ Z. Bringing the expectation inside the summation gives the
analogue to the normal equations:

∞
∑

h=−∞

βhγX(s − h) = γY X(s) (12)

for all s ∈ Z. We now decompose this into frequency components. We
define

B(ω) =
∞
∑

h=−∞

βhe
−2πiωh.

We next use (4) on the left-hand side and (6) on the right-hand side of
(12). For the left-hand side we have

∞
∑

h=−∞

βhγX(s − h) =
∞
∑

h=−∞

βh

∫ 1

2

−
1

2

e2πiω(s−h)fX(ω)dω

=

∫ 1

2

−
1

2

∞
∑

h=−∞

βhe
−2πiωhe2πiωsfX(ω)dω

=

∫ 1

2

−
1

2

B(ω)e2πiωsfX(ω)dω
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while on the right-hand side we have

γY X(t) =

∫ 1

2

−
1

2

e2πiωsfY X(ω)dω

and so, by the uniqueness of the Fourier transform, we get the frequency-
based version of the normal equations

B(ω)fX(ω) = fY X(ω). (13)

Let us now find a frequency-based analogue to the expression (10).
Using (11) we may write the MSE as

MSE = E
((

Yt −
∑

βhXt−h

)

Yt

)

= γY (0) −
∑

βhγXY (−h)

and transforming this expression we get

MSE =

∫ 1

2

−
1

2

fY (ω)dω −
∑

βh

∫ 1

2

−
1

2

e−2πiωhfXY (ω)dω

=

∫ 1

2

−
1

2

fY (ω) − B(ω)fXY (ω)dω.

Substituting for B(ω) using (13) we have

MSE =

∫ 1

2

−
1

2

fY (ω) −
fY X(ω)fXY (ω)

fX(ω)
dω

then using (7) and rewriting gives

MSE =

∫ 1

2

−
1

2

fY (ω)(1 −
|fY X(ω)|2

fY (ω)fX(ω)
)dω

which, finally, produces

MSE =

∫ 1

2

−
1

2

fY (ω)(1 − ρY X(ω)2)dω. (14)

Thus, as an analogue to (10), fY (ω)(1 − ρY X(ω)2) is the ω-component
of MSE in the minimum-MSE fit of (8).

6



Two more quick observations help with the interpretation of the coher-
ence. First, in (14) MSE ≥ 0 and fY (ω) ≥ 0 imply that 0 ≤ ρY X(ω) ≤
1 for all ω. The second begins with the noise-free case

Yt =

∞
∑

h=−∞

βhXt−h.

For simplicity let us assume Xt and Yt have mean zero and, as before,

∞
∑

t=−∞

|βt| < ∞.

Defining B(ω) as above, some manipulation shows that (13) again
holds. On the other hand, in discussing linear filters we noted

fY (ω) = |B(ω)|2fX(ω).

Combining this with (13) we have

ρY X(ω) =
|fY X(ω)|2

fX(ω)fY (ω)

=
B(ω)2fX(ω)2

fX(ω)fY (ω)

=
fY (ω)fX(ω)

fX(ω)fY (ω)
= 1

for all ω. Taking this together with (14) gives the interpretation that
the coherence is a frequency-component measure of linear association
between two theoretical time series.

One additional note. The complex-valued quantity BY X(ω) is often
written in polar form:

BY X(ω) = |BY X | exp(−iφY X(ω)).

Notice that in the special case Yt = βXt−h + Wt we have fY X(ω) =
β exp(−2πiωh)fX(ω) and the phase satisfies the linear function φY X(ω) =
−2πih.

We now consider data-based evaluation of coherence. The coherence
may be estimated by

ρ̂2
XY

=
|f̂XY (ω)|2

f̂X(ω)f̂Y (ω)
. (15)
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However, the smoothing in this estimation process is crucial. The raw
cross-periodogram IXY (ω) satisfies the relationship

|IXY (ω)|2 = IX(ω)IY (ω)

so that plugging the raw periodograms into (15) will always yield the
value 1. This make interpretation of coherence more subtle: it is not
trivial to come up with series x1, . . . , xn and y1, . . . , yn that have sub-
stantial peaks in their estimated spectral densities, but no substantial
peak, in the corresponding range of frequencies, for their estimated
cross-spectral density.

Here is such an example, starting with a pair of cosines. It involves two
steps (i) phase modulation and (ii) contamination of the cosines by an
AR(1) process.
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Figure 2: A pair of cosines, where the second (blue) has its phase mod-
ulated so that in the middle of the time interval it is in phase with the
other series, but at the ends it drifts to opposite phase. This decreases
the maginitude of the cross-correlation.
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Figure 3: Cross-correlation for two generated series.

Granger Causality

A way of examining the directional dependence among two stationary
processes {Xt, t ∈ Z} and {Yt, t ∈ Z} begins by assuming they may
be represented in the form of time-dependent regression. A paper by
Geweke (1982,J. Amer. Statist. Assoc.) spelled this out nicely, based
on earlier work by Granger.

The idea is very simple. In ordinary regression we assess the influence
of a variable (or set of variables) X2 on Y in the presence of another
variable (or set of variables) X1 by examining the reduction in variance
when we compare the regression of Y on (X1, X2) with the regression
of Y on X1 alone. If the variance is reduced sufficiently much, then
we conclude that X2 helps explain (predict) Y . Here, we replace Y
with Yt, replace X1 with {Ys, s < t} and X2 with {Xs, s < t}. In other
words, we examine the additional contribution to predicting Yt made
by the past observations of Xs after accounting for the autocorrelation
in {Yt}. The “causality” part comes when the past of Xs helps predict
Yt but the past of Ys does not help predict Xt.
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Figure 4: Estimated spectral densities and coherence for series in Fig
3.

In Geweke’s notation, suppose

Xt =
∞
∑

s=1

E1sXt−s + U1t

Yt =
∞
∑

s=1

G1sYt−s + V1t

with V (U1t) = Σ1 and V (V1t) = T1, and then suppose further that

Xt =
∞
∑

s=1

E2sXt−s +
∞
∑

s=1

F2sYt−s + U2t

Yt =

∞
∑

s=1

G2sYt−s +

∞
∑

s=1

H2sXt−s + V2t

where now V (U1t) = Σ2 and V (V1t) = T2. The residual variation in
predicting Yt from the past of Yt is given by T1 and that in predicting Yt
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Figure 5: Cross-correlation for two generated series.

from the past of Yt together with the past of Xt is given by T2. Granger
suggested the strength of “causality” (predictability) be measured by

GC = 1 −
|T1|

|T2|
.

Geweke recommended the modified form

FX→Y = log

(

|T1|

|T2|

)

.

Geweke also suggested a decomposition of FX→Y into frequency com-
ponents. That is, he gave an expression for fX→Y (ω) such that

FX→Y =

∫ 1

2

1

2

fX→Y (ω)dω.

In applications, the basic procedure is to (i) fit a bivariate AR model
(using, say, AIC to choose the orders of each of the terms); this modifies
the equations above by making them finite-dimensional; then (ii) test
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Figure 6: Estimated spectral densities and coherence for series in Fig
5.

the hypothesis H2s = 0 for all s and also the hypothesis F2s = 0 for all
s. This tests whether FX→Y = 0 and FY →X = 0.

As an illustration, I simulated a bivariate time series of length 1000
using the model

Xt = .5Xt−1 + Ut

Yt = .2Yt−1 + .5Xt−1 + Vt

where Ut ∼ N(0, (.2)2) and Vt ∼ N(0, (.2)2), independently. I then fit
a linear regression model of the form

Yt = β0 + β1Yt−1 + β2Xt−1 + εt

and, similarly, fit another model of the same form but with the roles of
X and Y reversed.

n=1000

x=arima.sim(list(order=c(1,0,0),ar=.5),sd=.5,n=n)
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Figure 7: Cross-correlation for two generated series.

y=null

y[1]=rnorm(1,0,.2)

for(i in 2:n){

y[i]=.5*x[i-1]+.2*y[i-1] + rnorm(1,0,.2)

}

y.xy=lm(y[2:n]~x[1:(n-1)]+y[1:(n-1)])

x.xy=lm(x[2:n]~x[1:(n-1)]+y[1:(n-1)])

summary(y.xy)

summary(x.xy)

#####################

# OUTPUT

#

#Call:

#lm(formula = y[2:n] ~ x[1:(n - 1)] + y[1:(n - 1)])

#

#Residuals:

# Min 1Q Median 3Q Max

#-0.605066 -0.132689 0.001135 0.126644 0.657045

#
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Figure 8: Estimated spectral densities and coherence for series in Fig
7.

#Coefficients:

# Estimate Std. Error t value Pr(>|t|)

#(Intercept) -0.001310 0.006223 -0.211 0.833

#x[1:(n - 1)] 0.495680 0.011589 42.773 <2e-16 ***

#y[1:(n - 1)] 0.191902 0.017811 10.774 <2e-16 ***

#

#Call:

#lm(formula = x[2:n] ~ x[1:(n - 1)] + y[1:(n - 1)])

#

#Residuals:

# Min 1Q Median 3Q Max

#-1.766162 -0.336188 -0.009646 0.319320 1.520826

#

#Coefficients:

# Estimate Std. Error t value Pr(>|t|)

#(Intercept) 0.008571 0.016003 0.536 0.592

#x[1:(n - 1)] 0.508429 0.029802 17.060 <2e-16 ***

#y[1:(n - 1)] -0.055286 0.045803 -1.207 0.228
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As expected, the first fit indicates that Xt−1 provides additional infor-
mation beyond Yt−1 in predicting Yt, but Yt−1 does not provide addi-
tional information beyond Xt−1 in predicting Xt. This is sometimes
summarized by saying Xt is causally related to Yt, but we must keep in
mind that “causal” is used in a predictive, time-directed sense.

This illustration sweeps under the rug the model selection part of the
problem, item (i) mentioned above. In applications this is non-trivial.
It is often handled by assuming the bivariate process follows an AR(p).
This means that we write, say, Zt = (Xt, Yt)

T and, in the case of AR(1),

Zt = α + ΦZt−1 + Wt

where Φ is a 2 × 2 matrix so that we have a pair of equations

Xt = α1 + Φ11Xt−1 + Φ12Yt−1 + Wt1

Yt = α2 + Φ21Xt−1 + Φ22Yt−1 + Wt2.

It is straightforward to perform bivariate regression, or ML estimation;
model selection is then often based on AIC. This simplification avoids
separate consideration of the X and Y terms for each response variable,
but of course it comes at the cost of possible lack of fit.

R Code for Figs

# FUNCTION DEFINITIONS

plotl=function(x,y,lwd=2,xlab="t",ylab=" ",...){

plot(x,y,type="l",lwd=lwd,xlab=xlab,ylab=ylab,...)}

phasemod=function(n,p=.2){

nr=floor(n*p/2)

ans=rep(0,n)

F=pbeta(((1:nr)-.5)/nr,5,5)

ans[1:nr]=pi*F-pi

ans[(n+1-nr):n]=pi*F

ans}

# FIG PRODUCTION

t=1:100

cosfn=cos(2*pi*t*.05)

cosfn.ph=cos(2*pi*t*.05+.75)

plotl(t,cosfn)

lines(t,cosfn.ph,type="l",col="blue",lwd=2)

cross=ccf(cosfn,cosfn.ph,plot=FALSE)
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plot(cross$lag,cross$acf,type="l",lwd=2,ylab="Cross Cor",xlab="Lag")

# dev.print...

cosfn.phmod2=cos(2*pi*t*.05+phasemod(100,p=.9))

plot(t,cosfn,type="l",lwd=2)

lines(t,cosfn.phmod2,type="l",col="blue",lwd=2)

cross=ccf(cosfn,cosfn.phmod2,plot=FALSE)

plot(cross$lag,cross$acf,type="l",lwd=2,ylab="Cross Cor",xlab="Lag")

dev.print(device=postscript,file="cos.crosscor.phmod.ps")

3 through 8

cos.cross=function(a=.2,sig1=.2,sig2=.2){

cosfn=cos(2*pi*t*.05)

cos1=a*cosfn+arima.sim(list(order=c(1,0,0),ar=.9),n=nt,sd=sig2)

cos2=a*cosfn+arima.sim(list(order=c(1,0,0),ar=.9),n=nt,sd=sig2)

list(cos1=cos1,cos2=cos2)

}

cos.plot1=function(cos1,cos2){

par(mfrow=c(2,1))

plot(t,cos1,type="l",lwd=2,ylab="",

ylim=c(min(c(cos1,cos2)),max(c(cos1,cos2))))

lines(t,cos2,type="l",col="blue",lwd=2)

cross=ccf(cos1,cos2,plot=FALSE)

plot(cross$lag,cross$acf,type="l",lwd=2,ylab="Cross Cor",xlab="Lag")

}

cos.plot2=function(cos1,cos2){

par(mfrow=c(2,1))

coher=spec.pgram(cbind(cos1,cos2),spans=c(3,3))

plot(coher$freq,coher$coh,type="l",lwd=2)

}

# FIG PRODUCTION STARTS HERE

nt=500

t=1:nt

# For first pair of figs

out=cos.cross.ph(1,.2,.2)

cos.plot1(out$cos1,out$cos2)

dev.print(device=postscript,file="cc3.ps")

cos.plot2(out$cos1,out$cos2)

dev.print(device=postscript,file="coh3.ps")

# For latter two pairs of figs

out=cos.cross.ph(.5,.2,.2)
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cos.plot1(out$cos1,out$cos2)

dev.print(device=postscript,file="cc3.ps")

cos.plot2(out$cos1,out$cos2)

dev.print(device=postscript,file="coh3.ps")
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