Laplace’s Method

Laplace’s method is an elementary technique for approximating an integral
of the form

1= / £(t) exp(nh(t))dt (1)

where f(t) and h(t) are smooth real-valued functions and h(t) has a single
maximum in the interior of the domain of integration. In many statistical
applications the loglikelihood function, or the log posterior density, plays
the role of nh(t) in (1), with n becoming the sample size. Although a log-
likelihood £(6) (or log posterior £(A)) based on distinct data values will not
have the form of a fixed function multiplied by n, £(6)/n (or £(6)) will often
behave like a fixed function of 6 for large samples (it converges to its ex-
pectation). In this situation, under regularity conditions, Laplace’s method
produces accurate approximations as long as the loglikelihood function (log
posterior density) is not too far from being quadratic or, equivalently, when
the likelihood function (posterior density) has roughly the form of a Normal
density function.

Letting ¢ denote the value that maximizes h(t), and assuming f(£) # 0, the
formula produced by Laplace’s method is

I'= (2m)"2| = nh"(0)| 712 f(£) exp(nh(t)) (2)

where m is the dimension of ¢ and h”(#) is the Hessian matrix of h(t) at .
Under suitable regularity conditions,

T=1-(1+0m™), )

as n — Q.

The argument used in obtaining (2) is pretty straightforward. In outline,
taking, for simplicity, the one-dimensional case (m = 1) with the domain of
integration being the whole real line, a quadratic Taylor series expansion of
h(t) about  produces the factor

exp(nh(t)) = exp(nh(f)) exp(gni"(E)(t  1?)

in the integrand, which is recognized to be proportional to a Normal density
having standard deviation 1/4/—nh”(f). Importantly, as n — oo, the inte-

grand becomes increasingly concentrated near t. Now, using f(t) = f(¢), (1)
becomes approximated by

[ @ expah(e)de = f(dyexpon(d)) [ esp(Guh@)e - e (@
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and the integral on the right-hand side of (4) is y/27/(—nh”(t)). This gives

the one-dimensional version of (2). Examination of the remainder terms in
the Taylor series expansions shows that the order of accuracy of the approxi-
mation is as given in (2). The key is that terms of order O(n~'/2) that appear
under the integral sign drop out when integrated against the Normal density
factor exp(3nh”(f)(t —1)?).

Laplace’s method has been known at least since Laplace. Because of its sim-
plicity, approximation (2) and its variants have been used by many statistical
researchers, often without any apparent awareness of the eponym. For addi-
tional details see Kass, Tierney, and Kadane (1990), The validity of posterior
expansions based on Laplace’s method, which is on my website.

Laplace’s Method for State-Space Models

We may write the filtering and prediction equations as

posti(xt|yre) o< f(yelxr)predi(x|yre—1).

and

predy(z|yr4—1) = /f($t|xt_1)postt_1(:vt-1Iylzt_l)dxt_l-

The problem is to compute

E(Xt|Y1:t) = /xtPOStt(xt‘ylzt>dxt

and in order to do so there must be an expression for the predictive density
predy(x|y1..—1). Laplace’s method may be used. All that needs to be done
is to approximate each distribution by a Gaussian.

The “Laplace-Gauss Filter” algorithm, based on first-order Laplace approx-
imation, is as follows.

1. At time ¢ = 0, initialize the predictive distribution of the state, f (x0) =

f(zo).
2. Observe y;.

3. (Filtering) Obtain the approximate posterior mean Z; and variance ¥,
by Laplace’s method:

Ty = &y = argmax,, ()
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and
{]t = [_l//(jt)]_la

where

~

I(xy) = log f(ye|ze) f (2] y1:e—1)-

Set p(x¢|y1.¢) to be a Gaussian distribution with the same mean and
variance.

4. (Prediction) Calculate the predictive distribution,

f(xt—i-l‘yl:t) = /f(xt+1|$t)f(xt|yl;t)dxt- (5)

Assuming that f(z,y1|z¢) is a Gaussian pdf, this integral may be per-
formed analytically. Otherwise, Laplace’s method must be used again.

5. Increment ¢ and go to step 2.

Example Brown et al. (1998, A statistical paradigm for neural spike train
decoding applied to position prediction from ensemble firing patters of rat
hipocampal place cells, J. Neurosci.) used the following state-space model.
The ith neuron was assumed to follow Poisson process intensity given by

)‘Z(t‘xt> = )‘Zm(t‘xtv O‘iv :uiv El)Aé(tkb(t): (bia 61)

where ¢(t) is a measured theta rhythm, the dependence on the theta rhythm
is

and the place field is defined by

At ) = exp (0! = 3l = () o= ).
The state model was taken to be the random walk

Xe =X + Wy

where W, is a bivariate Normal with mean zero and variance matrix Xy .
The neurons were assumed to be independent, given x;.

In this case we have

f(yelze) = H f(yilz)
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where

and

The random walk model gives

1

f(fl't|flft—1) = W

exp (—%(mt - xt_l)TZ;Vl(xt - $t_1)) )

The matrix Xy was assumed to be diagonal. Maximum likelihood based on

initial data was used to estimate the parameters Sy 11, Y02 and 3%, o, uh, pb, 34, Xiy, 3bs,
for all i. The additional phase parameters ¢’ were determined by an aver-

aging of spike phases. Plugging all of the estimates into the formulas above

for f(y:|z;) and f(x|z;_1) gives recursively computable forms once post, and

pred; are approximated by Gaussians. All we need to do is (1) find second

derivatives and (2) maximize.



