
Carnegie Mellon University Department of Statistics & Data Science

10/36-702 Statistical Machine Learning Homework #2
Solutions

DUE: 3:00 PM February 22, 2019

Problem 1 [10 pts.]

Consider the data (X1, Y1), . . . , (Xn, Yn) where Xi ∈ R and Yi ∈ R. Inspired by the fact that E[Y ∣X =
x] = ∫ yp(x, y)dy/p(x), define

m̂(x) = ∫
yp̂(x, y)dy
p̂(x)

where

p̂(x) = 1

n
∑
i

1

h
K

⎛
⎝
Xi − x
h

⎞
⎠

and

p̂(x, y) = 1

n
∑
i

1

h2
K

⎛
⎝
Xi − x
h

⎞
⎠
K

⎛
⎝
Yi − y
h

⎞
⎠
.

Assume that ∫ K(u)du = 1 and ∫ uK(u)du = 0. Show that m̂(x) is exactly the kernel regression
estimator that we defined in class.

Solution.

∫ y ⋅ p̂(x, y)dy
p̂(x)

=
1
nh2 ∫ y∑K(x−Xih )K(y−Yih )dy

1
nh ∑K(x−Xih )

=
∑K(x−Xih ) ∫ y 1

hK(y−Yih )dy
∑K(x−Xih )

=
∑K(x−Xih )Yi
∑K(x−Xih )

= m̂(x).
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Problem 2 [15 pts.]

Suppose that (X,Y ) is bivariate Normal:

(X
Y

) ∼ N
⎛
⎝
(µ
η
) , ( σ

2 ρστ
ρστ τ2

)
⎞
⎠
.

(a) (5 pts.) Show that m(x) = E[Y ∣X = x] = α + βx and find explicit expressions for α and β.

(b) (5 pts.) Find the maximum likelihood estimator m̂(x) = α̂ + β̂x.

(c) (5 pts.) Show that ∣m̂(x) −m(x)∣2 = OP (n−1).

Solution.

(a) Some simple calculations show

Y ∣X = x ∼ N
⎛
⎝
η + τ

σ
ρ(x − µ), (1 − ρ2)τ2

⎞
⎠
,

which gives
α = η − τρµ

σ
and β = τρ

σ
.

(b) Given a sample (X1, Y1), . . . , (Xn, Yn), the MLEs for the bivariate normal parameters are

µ̂ =X
η̂ = Y

σ̂2 = 1

n

n

∑
i=1

(Xi −X)2

τ̂2 = 1

n

n

∑
i=1

(Yi − Y )2

Ĉov(X,Y ) = 1

n

n

∑
i=1

(Xi −X)(Yi − Y ).

Note β = τρ
σ = τρσ

σ2 . Then by the equivariance property of the MLE,

β̂ = Ĉov(X,Y )
σ̂2

and
α̂ = Y − β̂X.

Again by equivariance,
m̂(x) = α̂ + β̂x.
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(c) m̂(x) is an MLE and satisfies the regularity conditions for asymptotic normality. Therefore,
√
n(m̂(x) −m(x)) ; N(0, I−1(m(x))),

which implies
√
n∣m̂(x) −m(x)∣ = Op(1) Ô⇒ ∣m̂(x) −m(x)∣2 = Op(n−1).
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Problem 3 [20 pts.]

Let m(x) = E[Y ∣X = x]. Let X ∈ [0,1]d. Divide [0,1]d into cubes B1, . . . ,BN whose sides have length
h. The data are (X1, Y1), . . . , (Xn, Yn). In this problem, treat the Xi’s as fixed. Assume that the
number of observations in each bin is positive. Let

m̂(x) = 1

n(x)∑i
Yi1(Xi ∈ B(x))

where B(x) is the cube containing x and n(x) = ∑i 1(Xi ∈ B(x)). Assume that

∣m(y) −m(x)∣ ≤ L∥x − y∥2

for all x, y. You may further assume that supxVar(Y ∣X = x) <∞.

(a) (10 pts.) Show that
∣E[m̂(x)] −m(x)∣ ≤ C1h

for some C1 > 0. Also show that

Var(m̂(x)) ≤ C2

n(x)
for some C2 > 0.

(b) (10 pts.) Now let X be random and assume that X has a uniform density on [0,1]d. Let
h ≡ hn = (C logn/n)1/d. Show that, for C > 0 large enough, P (minnj = 0)→ 0 as n→∞ where
nj is the number of observations in cube Bj .

Solution.

(a) We have that Xi are fixed, so that m(Xi) = Yi. Were they not, the below is still applicable by
using the law of iterated expectation and the law of total variance.

∣E[m̂(x)] −m(x)∣ =
RRRRRRRRRRR
E
⎡⎢⎢⎢⎢⎣

1

n(x)∑i
Yi1{Xi∈B(x)}

⎤⎥⎥⎥⎥⎦
−m(x)

RRRRRRRRRRR

=
RRRRRRRRRRR

1

n(x)∑i
(E[Yi] −m(x))1{Xi∈B(x)}

RRRRRRRRRRR

=
RRRRRRRRRRR

1

n(x)∑i
(m(Xi) −m(x))1{Xi∈B(x)}

RRRRRRRRRRR
≤ 1

n(x)∑i
∣m(Xi) −m(x)∣1{Xi∈B(x)}

≤ 1

n(x)∑i
L
√
dh ⋅ 1{Xi∈B(x)}

= L
√
dh

With the first upper bound due to triangular inequality and the second one because, given
x, y ∈ Bi:

∥x − y∥22 =
d

∑
j=1

(xj − yj)2 ≤ dh2 Ô⇒ ∥x − y∥2 ≤
√
dh
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Let supxVar(Y ∣X = x) =M.

Var(m̂(x)) = Var
⎛
⎝

1

n(x)∑i
Yi1{Xi∈B(x)}

⎞
⎠

= 1

n2(x)∑i
Var(Yi)1{Xi∈B(x)}

≤ M

n(x)
.

(b)

P (min
j
nj = 0) = P

⎛
⎝

B

⋃
j=1

{nj = 0}
⎞
⎠

≤
B

∑
j=1

P (nj = 0)

=
B

∑
j=1

n

∏
i=1

(1 − P (Xi ∈ Bj))

= 1

hd
(1 − hd)n

= n

C logn

⎛
⎝
1 − C logn

n

⎞
⎠

n

Since B = 1
hd
.1 Take C = 1. Then

n

C logn

⎛
⎝
1 − C logn

n

⎞
⎠

n

< n

C logn
e−

C logn
n

⋅n

= n

C logn
n−C

= 1

C logn

→ 0.

1if we assume 1/h is an integer, otherwise we could use that as an upper bound.
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Problem 4 [15 pts.]

Consider the RKHS problem

f̂ = argminf∈H
n

∑
i=1

(yi − f(xi))
2 + λ∥f∥2H, (1)

for some Mercer kernel function K ∶ Rd × Rd → R. In this problem, you will prove that the above
problem is equivalent to the finite dimensional one

α̂ = argminα∈Rn∥y −Kα∥22 + λαTKα, (2)

where K ∈ Rn×n denotes the kernel matrix Kij =K(xi, xj).
Recall that the functions K(⋅, xi), i = 1, . . . , n are called the representers of evaluation.
Recall that

• ⟨f,K(⋅, xi)⟩H = f(xi), for any function f ∈H

• ∥f∥2H = ∑ni,j=1 αiαjK(xi, xj) for any function f = ∑ni=1 αiK(⋅, xi).

(a) (5 pts.) Let f = ∑ni=1 αiK(⋅, xi), and consider defining a function f̃ = f + ρ, where ρ is any
function orthogonal to K(⋅, xi), i = 1, . . . , n. Using the properties of the representers, prove
that f̃(xi) = f(xi) for all i = 1, . . . , n, and ∥f̃∥2H ≥ ∥f∥2H.

(b) (10 pts.) Conclude from part (a) that in the infinite-dimensional problem (1), we need only
consider functions of the form f = ∑ni=1 αiK(⋅, xi), and that this in turn reduces to (2).

Solution.

(a) Since f, f̃ ∈HK , for all i = 1, . . . , n

f̃(xi) = ⟨f̃ ,K(⋅, xi)⟩HK
= ⟨f,K(⋅, xi)⟩HK + ⟨ρ,K(⋅, xi)⟩HK
= ⟨f,K(⋅, xi)⟩HK
= f(xi).

Also, because

⟨ρ, f⟩HK = ⟨ρ,
n

∑
i=1
αiK(⋅, xi)⟩

HK

=
n

∑
i=1
αi⟨ρ,K(⋅, xi)⟩HK

= 0,

we have,

∥f̃∥2HK = ⟨f, f⟩HK + ⟨ρ, ρ⟩HK + 2⟨ρ, f⟩HK
= ∥f∥2HK + ∥ρ∥2HK
≥ ∥f∥2HK .
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(b) For any f̃ ∈ HK , let ỹ = (f̃(x1), . . . , f̃(xn))T ∈ Rn. Let f ∈ HK be f = ∑ni=1 αiK(⋅, xi), where
α =K−1ỹ. Then

⟨f̃ − f,K(⋅, xi)⟩HK = ⟨f̃ ,K(⋅, xi)⟩HK −
n

∑
j=1

αj⟨K(⋅, xj),K(⋅, xi)⟩HK

= f̃(xi) −
n

∑
j=1

αjK(xi, xj)

= f̃(xi) − [K(K−1ỹ)]i
= f̃(xi) − f̃(xi)
= 0.

Hence, f̃ − f ⊥ K(⋅, xi) for all i = 1, . . . , n, and from (a), this implies f̃(xi) = f(xi) for all
i = 1, . . . , n, and ∥f̃∥2HK ≥ ∥f∥2HK , where equality holds if and only if f̃ = f . Therefore,

n

∑
i=1

(yi − f(xi))
2 + λ∥f∥2HK ≤

n

∑
i=1

(yi − f̃(xi))
2 + λ∥f̃∥2HK ,

where equality holds if and only if f̃ = f . Hence if f̃ = argminf∈HK ∑
n
i=1 (yi − f(xi))

2 +λ∥f∥2HK ,
then f̃ = ∑ni=1 αiK(⋅, xi) with α = K−1ỹ. So we only need to consider functions of the form
f = ∑ni=1 αiK(⋅, xi). By plugging in, we have

n

∑
i=1

(yi − f(xi))
2
λ∥f∥2HK =

n

∑
i=1

⎛
⎝
yi

n

∑
j=1

αjK(xi, xj)
⎞
⎠

2

+ λ
n

∑
i=1

n

∑
j=1

αiαjK(xi, xj)

= ∥y −Kα∥22 + λαTKα.
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Problem 5 [15 pts.]

Let X = (X(1), . . . ,X(d)) ∈ Rd and Y ∈ R. In the questions below, make any reasonable assumptions
that you need but state your assumptions.

(a) (5 pts.) Prove that E(Y −m(X))2 is minimized by choosing m(x) = E(Y ∣X = x).

(b) (5 pts.) Find the function m(x) that minimizes E∣Y − m(X)∣. (You can assume that the
conditional cdf F (y∣X = x) is continuous and strictly increasing, for every x.)

(c) (5 pts.) Prove that E(Y −βTX)2 is minimized by choosing β∗ = B−1α where B = E(XXT ) and
α = (α1, . . . , αd) and αj = E(Y X(j)).

Solution.

(a) Let g(x) be any function of x. Then

E(Y − g(X))2 = E(Y −m(X) +m(X) − g(X))2

= E(Y −m(X))2 +E(m(X) − g(X))2 + 2E((Y −m(X))(m(X) − g(X)))
≥ E(Y −m(X))2 + 2E((Y −m(X))(m(X) − g(X)))

= E(Y −m(X))2 + 2EE
⎛
⎝
(Y −m(X))(m(X) − g(X))

RRRRRRRRRRR
X

⎞
⎠

= E(Y −m(X))2 + 2E
⎛
⎝
(E(Y ∣X) −m(X))(m(X) − g(X))

⎞
⎠

= E(Y −m(X))2 + 2E
⎛
⎝
(m(X) −m(X))(m(X) − g(X))

⎞
⎠

= E(Y −m(X))2

(b) Let g(x) be any function of x. Recall that

E[∣Y − g(X)∣] = E{E[∣Y − g(X)∣ ∣X]}.

The idea is to choose c such that E[∣Y − c∣ ∣X = x] is minimized. Now define:

r(c) = E[∣Y − c∣ ∣X = x] = ∫ ∣y − c∣pY ∣X=x(y)dy.

The function hy(c) = ∣y − c∣ is differentiable everywhere except when y = c. Thus for c ≠ y

h′y(c) =
⎧⎪⎪⎨⎪⎪⎩

1 c > y
−1 c < y

= 1(c > y) − 1(c < y).

Since Y is continuous and has a density function, P (Y = c) = 0. So to minimize r(c) we can
differentiate under the integral sign and set the derivative equal to 0 to obtain:

r′(c) = ∫ h′y(c)pY ∣X=x(y)dy = ∫
c

−∞
pY ∣X=x(y)dy − ∫

∞

c
pY ∣X=x(y)dy

= 2∫
c

−∞
pY ∣X=x(y)dy − 1 = 0

⇐⇒ ∫
c

−∞
pY ∣X=x(y)dy =

1

2
,
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so that c =m(x), which is the median of pY ∣X=x(y). It is a minimum since r′(c) < 0 for c <m(x)
and r′(c) > 0 for c >m(x). Since m minimizes E[∣Y − c∣ ∣X = x] at every x for any g we get

E[∣Y − g(X)∣ − ∣Y −m(X)∣∣X = x] ≥ 0

which implies

R(g) −R(m) = E[∣Y − g(X)∣ − ∣Y −m(X)∣] = E{E[∣Y − g(X)∣ − Y −m(X)∣∣X]} ≥ 0.

(c) By setting the first derivative of the loss function equal to 0 we obtain:

∂R(β)
∂β

= 0

Ô⇒ ∂E(Y − βTX)2

∂β
= 0

Ô⇒ E[ − 2X(Y − βTX)] = 0

Ô⇒ 2Bβ − 2α = 0

Ô⇒ β∗ = B−1α,

where we can exchange the derivative and expectation by the dominated convergence theorem.
The loss function R(β) is strictly convex so β∗ is its unique minimum.
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Problem 6 [25 pts.]

Consider the many Normal means problem where we observe Yi ∼ N(θi,1) for i = 1,⋯, d. Let θ̂
minimize the penalized loss

∑
i

(Yi − θi)2 + λJ(θ).

Find an explicit form for θ̂ in three cases: (i) (10 pts.) J(β) = ∥θ∥0, (ii) (10 pts.) J(β) = ∥θ∥1 and
(iii) (5 pts.) J(β) = ∥θ∥22.

Solution.

(i) Note that

∑
i

(Yi − θi)2 + λ∥θ∥0 =
d

∑
j=1

⎛
⎝
(Yi − θi)2 + λ1(θi ≠ 0)

⎞
⎠
.

Then for each term i,

(Yi − θi)2 + λ1(θi ≠ 0) ≥ Y 2
i 1(θi = 0) + λ1(θi ≠ 0)

≥min

⎧⎪⎪⎨⎪⎪⎩
Y 2
i , λ

⎫⎪⎪⎬⎪⎪⎭

and equality holds if and only if

θ̂i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if Y 2
i < λ

0 or Yi if Y 2
i = λ

Yi if Y 2
i > λ.

Hence

∑
i

(Yi − θi)2 + λ∥θ∥0 =
d

∑
j=1

⎛
⎝
(Yi − θi)2 + λ1(θi ≠ 0)

⎞
⎠

≥
d

∑
j=1

min

⎧⎪⎪⎨⎪⎪⎩
Y 2
i , λ

⎫⎪⎪⎬⎪⎪⎭

and equality holds if and only if

θ̂i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ∣Yi∣ <
√
λ

0 or Yi if ∣Yi∣ =
√
λ

Yi if ∣Yi∣ >
√
λ.
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(ii) First write

min
θ
∑
i

(Yi − θi)2 + λ∥θ∥1 =min
θ
∑
i

(−2Yiθi + θ2i + λ∣θi∣) .

Now note it is simply equivalent to

min
θi

−2Yiθi + θ2i + λ∣θi∣

⇐⇒min
θi

−2θ̂OLSi θi + θ2i + λ∣θi∣

for all i = 1, . . . , d.

When θ̂OLSi ≥ 0, then θ̂i ≥ 0 so

−2θ̂OLSi θi + θ2i + λ∣θi∣ = −2θ̂OLSi θi + θ2i + λθi.

Differentiating with respect to θi, setting equal to zero, and solving gives

θ̂i = (θ̂OLSi − λ
2
)1θ̂OLSi ≥λ

2
}.

When θ̂OLSi ≤ 0, the analogous steps give

θ̂i = (θ̂OLSi + λ
2
)1{θ̂OLSi ≤−λ

2
},

Putting them together gives

θ̂i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ̂OLSi − λ
2 θ̂OLSi ≥ λ

2

0 θ̂OLSi ∈ ( − λ
2 ,

λ
2
)

θ̂OLSi + λ
2 θ̂OLSi ≤ λ

2

.

(iii) Here the objective function is differentiable everywhere. Taking the gradient w.r.t. θ we have

▽θ

⎛
⎝∑i

(Yi − θi)2 + λ∥θ∥22
⎞
⎠
=∑

i

(−2Yiθi + 2λθi) .

Setting this equal to 0 and solving for θ gives

θ̂i =
Yi

1 + λ
. (3)

Since the objective is strictly convex, (3) is the unique solution.
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