Carnegie Mellon University Department of Statistics & Data Science

10/36-702 Statistical Machine Learning Homework #2
Solutions

DUE: 3:00 PM February 22, 2019

Problem 1 [10 pts.]

Consider the data (X1,Y1),...,(Xn,Y,) where X; € R and Y; € R. Inspired by the fact that E[Y|X =

= [ yp(z,y)dy/p(z), define

ﬂx)

1 1 XZ - 1/1 -y
=Y K K .
e B i)
Assume that [ K(u)du =1 and [ uK(u)du = 0. Show that m(z) is exactly the kernel regression
estimator that we defined in class.

where

m>=%z%K(X

and

Solution.
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269 Loy (s
CNK(E) [y K5 dy
) »E(5X)
_TE(EY
D K(5)
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Problem 2 [15 pts.]

Suppose that (X,Y") is bivariate Normal:

X I o  pot
(Y) ) N( (77) (W 7 ))
(a) (5 pts.) Show that m(z) = E[Y|X =] = o + Sz and find explicit expressions for a and .

(b) (5 pts.) Find the maximum likelihood estimator m(x) = @ + Bz.

(c) (5 pts.) Show that |[m(z) - m(x)|* = Op(n™t).

Solution.
(a) Some simple calculations show

VX =z~ N(n +Zpe-p), (1- p2)72),
g

which gives
a=n- TP and B = P
o o

(b) Given a sample (X1,Y1),...,(Xn,Yn), the MLEs for the bivariate normal parameters are

=X
n=Y
o 1 2
== > (Xi-X)
n21
o 1 2
LYY
ni=1
1 n

Cov(X,Y) = —;(Xi—f)(m—?)-

3

Note 8 =22 = Z87 Then by the equivariance property of the MLE,

B o2 "
—. Cov(X,Y)
fB:A—2
o
and B
a=Y -pX.

Again by equivariance,
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(c) m(x) is an MLE and satisfies the regularity conditions for asymptotic normality. Therefore,
Via(m(z) =m(z)) ~ N(0,I7 (m())),
which implies

Valm(z) - m(z)] = Op(1) = |m(z) - m(z)* = Op(n").
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Problem 3 [20 pts.]

Let m(z) = E[Y|X = z]. Let X € [0,1]¢. Divide [0,1]% into cubes By, ..., By whose sides have length
h. The data are (X1,Y1),...,(Xn,Ys). In this problem, treat the X;’s as fixed. Assume that the
number of observations in each bin is positive. Let

M(a) =~ T VLK € B(z)

where B(xz) is the cube containing x and n(x) = Y, 1(X; € B(x)). Assume that
Im(y) - m(z)| < L]z -yl
for all z,y. You may further assume that sup, Var(Y|X = z) < co.

(a) (10 pts.) Show that
[E[m(x)] - m(x)] < Cih

for some C7 > 0. Also show that c
2

Var(m(z)) <
for some C5 > 0.

(b) (10 pts.) Now let X be random and assume that X has a uniform density on [0,1]¢. Let
h = hy, = (Clogn/n)Y?. Show that, for C' > 0 large enough, P(minn; = 0) - 0 as n - co where
n; is the number of observations in cube B;.

Solution.

(a) We have that X; are fixed, so that m(X;) =Y;. Were they not, the below is still applicable by
using the law of iterated expectation and the law of total variance.

([ ()] - m(x)| = E[%x) 2 m{xz-eBm)}] -m(@)
- %ﬂ?) . (E[Y;] —m(.%'))]l{XieB(x)}
= %ﬂg) . (m(XZ) —m(.f))]l{XieB(x)}
< n(lx) > |m(Xz') —m($)|ﬂ{X¢eB(x)}
< n(lx) ZL\/Eh : ]l{XieB(ac)}
= L\Vdh

With the first upper bound due to triangular inequality and the second one because, given
x,y € By

d
e ~yl3= Y (2 ~y;)* <dh?® = |e—yl, < Vdh
j=1



10/36-702 Statistical Machine Learning: Homework 2

Let sup, Var(Y|X =z) = M.

Var(m(z)) = Var(% ZY;JL{XieB(x)})

1
2@ ; Var(Y;)1x,eB(z)}

< M .
(b)
B
P(minn; =0) = P( ' {n; = O})
J j=1
B
<> P(n;=0)

<.
Il
—_

(1-P(xieB))

o
1=

)
Il
—_
S
1l
—_

—_

— _(1 _hd)n

on 1_C’logn "
- Clogn n

>
ISH

Since B = %.1 Take C' =1. Then

n (1_C’logn)n< n 67%'”
Clogn n Clogn
n -C
- Clognn
B 1
- Clogn
- 0.

Lif we assume 1/h is an integer, otherwise we could use that as an upper bound.
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Problem 4 [15 pts.]
Consider the RKHS problem
= . - 2
f:argmlnfe’HZ(yl_f(xl)) +>‘||f||$—[’ (1)
i=1

for some Mercer kernel function K : R x R¢ - R. In this problem, you will prove that the above
problem is equivalent to the finite dimensional one

@ = argmin,egn |y - Kal3 + Ao’ Ka, (2)

where K € R™" denotes the kernel matrix K” K(x;,xj).
Recall that the functions K (-, z;), i = 1,...,n are called the representers of evaluation.
Recall that

o (f,K(-,xi))y = f(x;), for any function feH

. ”fH?_[ = szzl a0 K (x4, x5) for any function f= Y7, o, K (-, 2;).

(a) (5 pts.) Let f = X%, a;K(-,z;), and consider defining a function f = f + p, where p is any
functign orthogonal to K (-, 2;), i = 1,... ;1. Using the properties of the representers, prove
that f(z;) = f(;) for alli=1,...,n, and | f]3, > | f|%,.

(b) (10 pts.) Conclude from part (a) that in the infinite-dimensional problem (1), we need only
consider functions of the form f =37, a; K(-,z;), and that this in turn reduces to (2).

Solution.

(a) Since f.feHy, foralli=1,...,n

F(@i) = (F K Comi)ag
= ([ K Cwi) e + (0, K)o
= ([ K(2i))ny
= f(z3).

Also, because

<p7f>HK =1\p,

—
SN

Il
—_

)

Hi

M=

S
1]
—_

ai<p7K('7xi)>'HK

Il
=

we have,

| s, = (F, Fhaee + (o PV + 200, Frusc
= [ 130 + Iol3e,

2
2 [ £l
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(b) For any f e My, let 7= (f(x1),...,f(zn))T € R™. Let f e Hg be f = Y K (- x;), where
a =K'y, Then

(= F Gl = (FLE Gl = 300U ) K o)

= flxi) - Z;%’K(%iﬂj)
o
= fla) - [K(K'9)];

= f(%‘) - 7(901‘)
=0.

Hence, f - f 1 K(-,2;) for all i = 1,...,n, and from (a), this implies f(z) = f(x;) for all
i=1,...,n, and ||f||§_tK ”fHHKv where equahty holds if and only if f = f. Therefore,

5 (= @)+ My < 3 (- Tl ATl

where equality holds if and only if f = f. Hence if f = argmin peg, Mty (yl - f(:vl))2 + )foH%_[K,
then f = Y%, oy K (-, x;) with o = K7, So we only need to consider functions of the form
f=>" a;K(-,x;). By plugging in, we have

2
Z;( ~ F@)) A2, = Z;(yizlajf((fvm«"j)) +)\Z;Z:1ai04jK(l'i,xj)
1= i= j= i=1j=

= |y - Ka|2+rxa'Ka.
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Problem 5 [15 pts.]

Let X = (X(1),...,X(d)) €eR? and Y ¢ R. In the questions below, make any reasonable assumptions
that you need but state your assumptions.

(a) (5 pts.) Prove that E(Y —m(X))? is minimized by choosing m(z) = E(Y|X = z).

(b) (5 pts.) Find the function m(x) that minimizes E|Y — m(X)|. (You can assume that the
conditional cdf F'(y|X =) is continuous and strictly increasing, for every x.)

(c) (5 pts.) Prove that E(Y - 37 X)? is minimized by choosing 8. = B~'a where B = E(XX7T) and
a=(ai,...,aq) and a; = E(YX(45)).

Solution.

(a) Let g(z) be any function of z. Then
E(Y - g(X))* =E(Y -m(X) + m(X) - g(X))
=E(Y —m(X))? + E(m(X) - g(X))* + 2E((Y —m(X))(m(X) - g(X)))
> E(Y - m(X))? + 2E((Y - m(X))(m(X) - g(X)))

=E(Y -m(X))*+ QEE((Y -m(X))(m(X) - g(X))‘X)
=E(Y -m(X))*+ 2E((E(Y\X) -m(X))(m(X) - g(X)))

=E(Y -m(X))* + QE((m(X) -m(X))(m(X) —g(X)))
=E(Y -m(X))?
(b) Let g(x) be any function of z. Recall that
E[lY - g(X)[] = E{E[[Y - g(X)| [X]}.
The idea is to choose ¢ such that E[|Y - c|| X = 2] is minimized. Now define:
r(e) =ELY = el | X =] = [ ly - clpyixer(v)dy.

The function hy(c) = |y — ¢| is differentiable everywhere except when y = ¢. Thus for ¢ # y

B (c) :{: sz “1(e>y)-1(c<y).

C

Since Y is continuous and has a density function, P(Y =¢) = 0. So to minimize r(c) we can
differentiate under the integral sign and set the derivative equal to 0 to obtain:

r'(c) =fh;(0)pwx:z(y)dy= [;pym:x(y)dy—fcoopnx:x(y)dy
=2 [;pY\sz(y)dy -1=0

¢ 1
— [wa|X:z(y)dy =5
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so that ¢ = m(z), which is the median of py|x_(y). It is a minimum since '(¢) < 0 for ¢ < m(z)
and r'(c) > 0 for ¢ >m(z). Since m minimizes E[|Y - ¢[ | X = 2] at every « for any g we get

E[[Y = g(X)| =Y -m(X)[|X =2] 20
which implies

R(g) = R(m) = E[|Y - g(X)| = [V = m(X)[] = E{E[[Y - g(X)| - ¥ = m(X)|[|X]} > 0.

(c) By setting the first derivative of the loss function equal to 0 we obtain:

OR(B) _,

op
OE(Y - pTX)?
— 5 -

— IE[ —9X(Y - 5TX)] -0

0

= 2B -2a=0

= O, = B_la,

where we can exchange the derivative and expectation by the dominated convergence theorem.
The loss function R(f) is strictly convex so (. is its unique minimum.
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Problem 6 [25 pts.]

Consider the many Normal means problem where we observe Y; ~ N(6;,1) for i = 1,---,d. Let g
minimize the penalized loss

S (Y- 0)° + AT(6).

()

Find an explicit form for @ in three cases: (i) (10 pts.) J(B8) = |0]o, (i) (10 pts.) J(B) = |8]; and
(iii) (5 pts.) J(B) = [0]3-

Solution.

(i) Note that
S0+ Aol = 3, ((n« 0+ AL(0; + 0))'
i J=1

Then for each term 4,

(Y= 60;)* + A\1(0; £ 0) > Y1(6; = 0) + A1L(6; # 0)

> min {Yf, )\}

and equality holds if and only if

0 if V2 <\
;i=100rY; ifY2=)\
Y; if 2>\

Hence

S(Yi-0;)* + A|0]o = i ((Y; —0;)% + A1(0; # 0))
i j=1
d
> > min {Yf, )\}
j=1

and equality holds if and only if

0 if [V;] < VA
gi={0orY; if|Y;|=vX
Y; if [Y;] > VA

10
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(i)

(i)

First write

meinZ(Yi —0:)2+ \|0]1 = mginz (-2Y;0; + 67 + \|6y]) .

Now note it is simply equivalent to
min ~2Y;0); + 02 + \|6;|

— min -207150; + 62 + \|6;|

0;

foralli=1,...,d.
When @;-OLS >0, then 6; > 0 so

—20°150; + 07 + \6;] = —20°750; + 02 + \6;.
Differentiating with respect to 6;, setting equal to zero, and solving gives

7 - (9?LS _ g)]l@;owz%}.

When @OLS <0, the analogous steps give
—~ A
6 = (00

i +§):ﬂ.{a;_OLSS_%},

Putting them together gives

NOLS A PpOLS A
o nOLS A A
0i=40 07" e (- 9.3)
NOLS |, A pnOLS _ )

Here the objective function is differentiable everywhere. Taking the gradient w.r.t. 6 we have

VQ( Z(lfz - 91)2 + )\‘9”%) = Z (—2}/1‘91' + 2)\9,) .

Setting this equal to 0 and solving for 6 gives

1+

Since the objective is strictly convex, (3) is the unique solution.

11



