
Carnegie Mellon University Department of Statistics & Data Science

36-708 Statistical Machine Learning Homework #3
Solutions

DUE: March 29, 2019

Problem 1 [9 pts.]

Get the iris data. (In R, use data(iris).) There are 150 observations. The outcome is “Species”
which has three values. The goal is to predict Species using the four covariates. Compare the following
classifiers: (i) LDA [3 pts.], (ii) logistic regression [3 pts.], (iii) nearest neighbors [3 pts.]. Note that
you will need to figure out a way to deal with three classes when using logistic regression. Explain
how you handled this. Summarize your results.

Solution.
In order to deal with multiple classes for logistic regression one can either fit a logistic regression for
each of the classes versus the others or use a multinomial logistic regression model. We will use the
latter. In these settings the output is a 3 dimensional vector (one per classes) (π1, π2, π3), such that
∑i πi = 1. The model learns β1 and β2 such that:

log (
π1

1 − π1 − π2
) =XT

i β1 log (
π2

1 − π1 − π2
) =XT

i β2

We will use the R package nnet which uses neural networks.

set.seed(7)
data(iris)

test_size <- 0.4
test_idx <- sample(nrow(iris), size = as.integer(nrow(iris) * test_size))

X_train <- iris[-test_idx, 1:4]
y_train <- iris[-test_idx, 5]
X_test <- iris[test_idx, 1:4]
y_test <- iris[test_idx, 5]

####### LDA
require(MASS)
fit_lda <- lda(X_train, y_train)
pred_lda <- predict(fit_lda, X_test)
lda_acc <- sum(pred_lda$class == y_test)/(length(y_test))
table(pred_lda$class, y_test)

####### Multinomial Regression
require(nnet)
fit_logreg <- multinom(Species~Sepal.Length +Sepal.Width +Petal.Length +Petal.Width,

data=iris[-test_idx,])
pred_logreg <- predict(fit_logreg, X_test)
mult_logreg_acc <- sum(pred_logreg == y_test)/(length(y_test))
table(pred_logreg, y_test)
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####### KNN
require(class)
pred_knn <- knn(X_train, X_test, cl=y_train, k=3)
knn_acc <- sum(pred_knn == y_test)/(length(y_test))
table(pred_knn, y_test)

LDA and K-nearest neighbors classification achieves 96.67% accuracy, while multinomial logistic re-
gression achieves 95% accuracy. Given the low number of samples, the three models can be considered
equivalent in terms of performance over this dataset. A further analysis changing the random split
between training and testing set confirms this hypothesis.
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Problem 2 [8 pts.]

Use the iris data again but throw away the Species variable. Use k-means++ clustering [4 pts.] and
mean-shift clustering [4 pts.]. Compare the clusterings to the true group defined by Species. Which
method worked better?

Solution.
We use the R packages and to run k-means++ and mean-shift clustering.

data(iris)
X <- iris[, 1:4]
y <- iris[, 5]

###### K-MEANS++
library(LICORS)
set.seed(7)
clustering_kmpp <- kmeanspp(X, k = 3, iter.max = 300, nstart = 10)

# Getting the labels of the clustering
table_results_kmpp <- table(clustering_kmpp$cluster, y)
label_kmpp <- apply(table_results_kmpp, 2, which.max)
clustering_labels <- factor(clustering_kmpp$cluster,

labels = names(label_kmpp)[order(label_kmpp)])

# Calculating accuracy
acc_kmpp <- sum(y == clustering_labels)/nrow(X)
print(acc_kmpp)

###### Mean Shift
library(LPCM)
set.seed(7)
clustering_ms <- ms(X, h=0.11)

# Getting the labels of the clustering
table_results_ms <- table(clustering_ms$cluster.label, y)
label_ms <- apply(table_results_ms, 2, which.max)
clustering_labels <- factor(clustering_ms$cluster.label,

labels = names(label_ms)[order(label_ms)])

# Calculating accuracy
acc_ms <- sum(y == clustering_labels)/nrow(X)
print(acc_ms)

As in the mean-shift clustering algorithm we cannot input the number of clusters, the algorithm
struggles finding exactly only three clusters. We have used the value h = 0.11 for the bandwidth,
found via using a validation set, to get exactly three clusters and be able to compare the two methods
apple-to-apple. K-means seems to be performing better with an accuracy of 89% against an accuracy
of 68%.
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Problem 3 [9 pts.]

Download the data from http://www-bcf.usc.edu/~gareth/ISL/Ch10Ex11.csv. This is a gene
expression dataset. There are 40 tissue samples with measurements on 1,000 genes. The first 20 data
points are from healthy people. The second 20 data points are from diseased people.

(a) [3 pts.] Use sparse logistic regression to classify the subject. (You may use the function glmnet
in R if you like.) Explain how you chose λ. Summarize your findings;

(b) [3 pts.] Now use a Sparse Additive Model as described in class. Summarize your findings;

(c) [3 pts.] Now suppose we don’t know which are healthy and which are diseased. Apply clustering
to put the data into two groups. Applying k-means clustering may not work well because the
dimension is so high. Instead, you will need to do some sort of dimension reduction or sparse
clustering. One very simple method is Sparse Alternate Similarity (arXiv:1602.07277). But you
may use any method you like. Describe what you chose to do and what the results are.

Solution.
For sparse logistic regression, we use the R package glmnet, and we choose the best λ via cross
validation. For sparse additive models we use the R package SAM, in which the run for a series of
λ and we select the minimum. For the clustering step we use sparse clustering (Witten, D.M. and
Tibshirani, R. A framework for feature selection in clustering, 2010) with the R package sparcl, in
which the best bound for the L1 norm is selected via a permutation approach and the number of
clusters is set to 2. All methods perfectly separate the training data. As a note, one could have
further split the data into training and testing but, given the low sample size, the most sensible
approach would be to use the leave-one-out mis-classification rate as performance metric.

# Read in data
X <- read.csv("http://www-bcf.usc.edu/~gareth/ISL/Ch10Ex11.csv", header=F)

# Generate classes
y <- rep(0,40)
y[21:40] <- 1

#### Sparse Logistic Regression
require(glmnet)

# Tuning Lambda via CV
cvfit <- cv.glmnet(t(X), y, alpha=1, family="binomial", nfold=10)

# Fitting Sparse Logistic Regression
sparse_log_reg <-glmnet(t(X), y, family = "binomial", alpha = 1,

lambda = cvfit$lambda.min)
coeff_sparse_log_reg <- as.matrix(coef(sparse_log_reg))
print(nrow(X) - sum(coeff_sparse_log_reg==0)) #Number of >0 coefficients

proba_sparse_log_reg <- predict(object = sparse_log_reg, newx =t(X), type = "response")
pred_sparse_log_reg <- ifelse(proba_sparse_log_reg>0.5, 1, 0)

acc_sparse_log_reg <- sum(y == pred_sparse_log_reg)/length(y)
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print(acc_sparse_log_reg)

#### Sparse Additive Models
require(SAM)

# Fit SAM for 100 lambda - pick the best
sam_model <-samLL(X = as.matrix(t(X)),

y = as.matrix(y),
p = 3, nlambda=100)

sam_final <-samLL(X = as.matrix(t(X)),
y = as.matrix(y),
lambda =min(sam_model$lambda), p = 3)

# Prediction
pred_sam <-as.data.frame(predict(object = sam_final,

newdata = t(X)))

acc_sam <- sum(y == pred_sam)/length(y)
print(acc_sam)

#### Sparse Clustering
library(sparcl)

best_bound_ift <- KMeansSparseCluster.permute(t(x), K=2, wbound=seq(1.1, 100,
length.out=20))

sparse_cluster <- KMeansSparseCluster(x = t(X), K = 2, wbounds = best_bound_ift$bestw)
acc_sparcl <- sum(y == (as.numeric(sparse_cluster[[1]]$Cs) -1))/length(y)
print(acc_sparcl)
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Problem 4 [10 pts.]

Let X = (X1, . . . ,Xd) ∈ Rd. Suppose that X ∼ N(µ,Σ). Let Ω = Σ−1. Let j ≠ k be integers such that
1 ≤ j < k ≤ d. Let Z = (Xs ∶ s ≠ j, k).

(a) [3 pts.] Show that the distribution of (Xj ,Xk)∣Z is N(a,B) and find a and B explicitly.
(b) [4 pts.] Show that Xj ∐Xk∣Z if and only if Ωjk = 0.
(c) [3 pts.] Now let X1, . . . ,Xn ∼ N(µ,Σ). Find the mle Ω̂.

Solution.

(a) More generally, by Theorem 1, for any random vectors X1 ⊂ X and X2 = X/X1, X2∣X1 follows
a multivariate normal distribution.

Specifically, if X1 ∈ Rr and X2 ∈ Rs = Rd−r, then

X2∣X1 = x1 ∼ N(µ2 +Σ21Σ
−1
11(x1 −µ1),Σ22 −Σ21Σ

−1
11Σ12),

where (if necessary) we have reordered X so that

X = (
X1

X2
) and µ = E(X) = (

µ1

µ2
) and Σ = Cov(X) = (

Σ11 Σ12

Σ21 Σ22
) .

Proof.

i. E(X2∣X1 = x1) = µ2 +Σ21Σ
−1
11(x1 −µ1)

Let

A = (
I 0

−Σ21Σ
−1
11 I

) .

A is full-rank so, by Theorem 2,

AX = (
X1

X̃2
)

follows a multivariate normal distribution, where

X̃2 =X2 −Σ21Σ
−1
11X1.

Now,

Cov(X1, X̃2) = Cov(X1,X2 −Σ21Σ
−1
11X1)

= Cov(X1,X2) −Σ21Σ
−1
11Cov(X1,X1)

= Σ12 −Σ21Σ
−1
11Σ11

= Σ12 −Σ12

= 0,
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10/36-702 Statistical Machine Learning: Homework 3

(a) so X1 and X̃2 are uncorrelated, and thus independent by Theorem 4. Hence,

E(X2∣X1 = x1) = E(X̃2 +Σ21Σ
−1
11X1∣X1 = x1)

= E(X̃2∣X1 = x1) +Σ21Σ
−1
11x1

= E(X̃2) +Σ21Σ
−1
11x1

= E(X2 −Σ21Σ
−1
11X1) +Σ21Σ

−1
11x1

= µ2 −Σ21Σ
−1
11µ1 +Σ21Σ

−1
11x1

= µ2 +Σ21Σ
−1
11(x1 −µ1). ✓

ii. Cov(X2∣X1 = x1) = Σ22 −Σ21Σ
−1
11Σ12

Again using the fact that X1 and X̃2 are independent, we have

Cov(X2∣X1 = x1)

= Cov(X̃2 +Σ21Σ
−1
11X1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fixed

∣X1 = x1)

= Cov(X̃2∣X1 = x1)

= Cov(X̃2)

= Cov(X2 −Σ21Σ
−1
11X1)

= Cov(X2,X2) −Σ21Σ
−1
11Cov(X1,X2) −Cov(X2,X1)(Σ21Σ

−1
11)

T
+Σ21Σ

−1
11Cov(X1,X1)(Σ21Σ

−1
11)

T

= Σ22 −Σ21Σ
−1
11Σ12 −Σ21(Σ

−1
11)

TΣT
21 +Σ21Σ

−1
11Σ11(Σ

−1
11)

TΣT
21

= Σ22 −Σ21Σ
−1
11Σ12 −Σ21Σ

−1
11Σ12 +Σ21(Σ

T
11)

−1ΣT
21

= Σ22 − 2Σ21Σ
−1
11Σ12 +Σ21(Σ11)

−1Σ21

= Σ22 − 2Σ21Σ
−1
11Σ21 +Σ21(Σ11)

−1Σ21

= Σ22 −Σ21Σ
−1
11ΣT

21. ✓

Hence,
X2∣X1 = x1 ∼ N(µ2 +Σ21Σ

−1
11(x1 −µ1),Σ22 −Σ21Σ

−1
11Σ12).

Notice that the distribution of (Xj ,Xk)∣Z is given by the special case where

X1 = (Xs ∶ s ≠ j, k) and X2 = (Xj ,Xk). ∎

(b) As in part (a), let us first reorder X so that

X = (
X1

X2
) and Σ = Cov(X) = (

Σ11 Σ12

Σ21 Σ22
) ,

where
X1 = (Xs ∶ s ≠ j, k) and X2 = (Xj ,Xk).
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10/36-702 Statistical Machine Learning: Homework 3

Similarly, we can partition the (unknown) matrix Ω ∈ Rd×d as

Ω = (
Ω11 Ω12

Ω21 Ω22
) ,

so that

Ω22 = (
Ωjj Ωjk

Ωkj Ωkk
) .

By definition, and using the fact that Σ is symmetric (and thus, so is Ω), we have

ΣΩ = (
Σ11Ω11 +Σ12Ω

T
12 Σ11Ω12 +Σ12Ω22

ΣT
12Ω11 +Σ22Ω

T
12 ΣT

12Ω12 +Σ22Ω22
) = (

Id−2 0

0 I2
) .

Setting each block equal,

Σ11Ω11 +Σ12Ω
T
12 = Id−2 Ô⇒ Ω11 = Σ−1

11 −Σ−1
11Σ12Ω

T
12

ΣT
12Ω11 +Σ22Ω

T
12 = 0 Ô⇒ ΩT

12 = −Σ−1
22ΣT

12Ω11

Σ11Ω12 +Σ12Ω22 = 0 Ô⇒ Ω12 = −Σ−1
11Σ12Ω22 (1)

ΣT
12Ω12 +Σ22Ω22 = I2 Ô⇒ Ω22 = Σ−1

22 −Σ−1
22ΣT

12Ω12. (2)

Plugging (1) into (2), we get

Ω22 = Σ−1
22 +Σ−1

22ΣT
12Σ

−1
11Σ12Ω22

Ô⇒ I2 = Σ−1
22Ω−1

22 +Σ−1
22ΣT

12Σ
−1
11Σ12

Ô⇒ (I2 −Σ−1
22ΣT

12Σ
−1
11Σ12)Ω22 = Σ−1

22

Ô⇒ (Σ22 −ΣT
12Σ

−1
11Σ12)Ω22 = I2

Ô⇒ Ω22 = (Σ22 −ΣT
12Σ

−1
11Σ12)

−1

Ô⇒ Ω22 = (Σ22 −Σ21Σ
−1
11ΣT

21)
−1.

Using part (a) we see

Ω−1
22 = (

Ωjj Ωjk

Ωkj Ωkk
)

−1

= Cov(X2∣X1 = x1).

“ Ô⇒ ” Suppose Xj ⊥⊥ Xk∣Z. Then Xj and Xk are uncorrelated given Z. That is, the off-
diagonal elements of the 2 × 2 matrix Cov(X2∣X1 = x1) are zero. And the inverse of any
diagonal matrix is diagonal so Ωjk = Ωkj = 0.

“ ⇐Ô ” Suppose Ωjk = 0. ΩT = (Σ−1)T = (ΣT )−1 = Σ−1 = Ω, so Ωkj = 0 as well. That is, Ω22

is diagonal. Therefore, its inverse Cov(X2∣X1 = x1) is also diagonal, which implies Xj and Xk

are uncorrelated given Z. By Theorem 4, Xj and Xk are independent given Z. ∎

(c) The log likelihood in terms of Ω is,

l ∝
n

2
log ∣Ω∣ −

1

2

n

∑
i=1

(xi − µ)
TΩ(xi − µ).

MLE can be get by taking derivative with respect toΩ and set it to zero,

n

2
Ω−1

−
1

2

n

∑
i=1

(xi − µ)(xi − µ)
T
= 0,
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10/36-702 Statistical Machine Learning: Homework 3

that is,

Ω̂ = (
1

n

n

∑
i=1

(xi − µ)(xi − µ)
T
)
−1.

Alternatively, the MLE for Ω, the inverse of Σ, is the inverse of MLE for Σ,

Ω̂ = Σ̂−1 = (Σ̂)
−1

= (
1

n

n

∑
i=1

(xi − µ)(xi − µ)
T
)
−1.
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10/36-702 Statistical Machine Learning: Homework 3

Problem 5 [12 pts.]

Let X = (X1,X2,X3,X4,X5) be a random vector distributed as X ∼ N(0,Σ) where

Σ−1
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 0 1 0 0
0 3 1 0 0
1 1 3 1 0
0 0 1 3 1
0 0 0 1 3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(a) [1 pts.] What is the graph for X, viewed as an undirected graphical model?

(b) [2 pts.] List the maximal cliques of the graph.

(c) [4 pts.] Which of the following independence statements are true?

(a) X2 ⊥⊥X3∣X1,X2

(b) X3 ⊥⊥X4∣X5

(c) {X1,X2} ⊥⊥X3∣X4,X5

(d) X1 ⊥⊥X5∣X3

(d) [2 pts.] List the local Markov properties for this graphical model.

(e) [3 pts.] Simulate 100 observations from this model. Construct a graph using hypothesis testing.
Report your results. Include your code.

Solution.

(a) The edges can be seen directly from Σ−1. That is,

X3

X2

X1

X4

X5

Figure 1. Conditional independence graph of X = (X1,X2,X3,X4,X5)

(b) By definition, the maximal cliques are {1,3},{2,3},{3,4},{4,5}.

(c) (Statement (a) has an typo and is ignored)

These statements can be verified or falsified by simply considering the graph in part (a). To see
the conditional independence between set of nodes A and B conditioning on C, check if there is
a connecting path between A and B when the nodes in C are blocked. As a result,
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10/36-702 Statistical Machine Learning: Homework 3

(b) FALSE;

(c) FALSE;

(d) TRUE.

(d) Local Markov property is :

∀s ∈ V, p(xs∣xt, t ≠ s) = p(xs∣xt, t ∈ N(s)).

Hence, in our case, Local Markov properties is as below :

X1∣X2,X3,X4,X5
d
=X1∣X3

X2∣X1,X3,X4,X5
d
=X2∣X3

X3∣X1,X2,X4,X5
d
=X3∣X1,X2,X4

X4∣X1,X2,X3,X5
d
=X4∣X3,X5

X5∣X1,X2,X3,X4
d
=X5∣X4.

(e) As provided in the lecture notes, you can either construct a marginal correlation graph or a
partial correlation graph. We present the code for a partial correlation graph following the
normal approximation testing described in page 11. The produced graph is consistent with the
graph in part (a).

library(MASS)
#generate sample
d = 5; n = 100; alpha = 0.05; m = d*(d-1)/2
omega <- matrix(c(3,0,1,0,0,

0,3,1,0,0,
1,1,3,1,0,
0,0,1,3,1,
0,0,0,1,3), ncol = 5, byrow = TRUE)

X <-mvrnorm(n, mu = rep(0,d), Sigma = solve(omega))

#estimate matrix R
S_n <- 1/n * t(X)%*%X
hatOmega <- solve(S_n)
Rmat <- -hatOmega/sqrt(outer(diag(hatOmega), diag(hatOmega)))

#test edge
Z <- 1/2*log((1+Rmat)/(1-Rmat))
edge <- abs(Z) > (qnorm(1 - alpha/(2*m))/sqrt(n - d - 1))
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10/36-702 Statistical Machine Learning: Homework 3

Problem 6 [8 pts.]

Let X = (X1, . . . ,X4) where each variable is binary. Suppose the probability function is

log p(x) = ψ∅ + ψ1(x1) + ψ12(x1, x2) + ψ13(x1, x3) + ψ24(x2, x4) + ψ34(x3, x4).

(a) [3 pts.] Draw the implied graph;

(b) [3 pts.] Write down all the independence and conditional independence relations implies by
the graph;

(c) [2 pts.] Is the model graphical? Is the model hierarchical?

Solution.

(a) The implied graph is

X1 X2

X3 X4

Figure 2. Implied graph of X = (X1,X2,X3,X4)

(b) From Theorem 9 in lectures notes, we have X1 ⊥⊥X4∣X2,X3 and X2 ⊥⊥X3∣X1,X4.

(c) Not graphical, not hierarchical. This model satisfies ψ1(x1) = 0 but ψ12(x1, x2) ≠ 0, so the
model is not hierarchical. And hence this model is not graphical as well, by Lemma 10 in the
Graphical Models lecture notes.
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Problem 7 [8 pts.]

Let X1, . . . ,X4 be binary. Draw the independence graphs corresponding to the following log-linear
models (where α ∈ R). Also, identify whether each is graphical and/or hierarchical (or neither).

(a) [2 pts.] log p(x) = α + 11x1 + 2x2 + 3x3

(b) [2 pts.] log p(x) = α + 2x2 + 1.5x3 + 17x4 + 12x2x3 + 78x2x4 + 3x3x4 + 32x2x3x4

(c) [2 pts.] log p(x) = α + 9x1 + 2x2 + 1.5x3 + 17x4 + 12x2x3 + 3x3x4 + x1x4 + 2x1x2

(d) [2 pts.] log p(x) = α + 115x1x2x3x4.

Solution.

(a) Hierarchical, but not graphical.

X1 X2

X3 X4

Note: X4 is a clique, but β4 = 0.

(b) Hierarchical, but not graphical.

X1 X2

X3 X4

(c) Graphical and hierarchical.

X1 X2

X3 X4

13
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(d) Not graphical, nor hierarchical.

X1 X2

X3 X4
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Problem 8 [10 pts.]

Consider the log-linear model

log p(x) = β0 + x1x2 + x2x3 + x3x4.

Simulate n = 1000 random vectors from this distribution. (Show your code.) Fit the model

log p(x) = β0 +∑
j

βjxj +∑
k<`

βk`xkx`

using maximum likelihood. Report your estimators. Use hypothesis testing to decide which parame-
ters are non-zero. Compare the selected model to the true model.

Solution.
To simulate random vectors from the log-linear distribution we simply convert to the corresponding
multinomial and sample from it. We then fit the requested model using glm command with a log-link
function (family = "poisson"). The results for n = 1000 are given in Table I.

# Setup
set.seed(1)
n <- 1000
x1<-x2<-x3<-x4<-seq(0,1,by=1)
grid <- expand.grid(x1,x2,x3,x4)

# Calculate probabilities
p <- rep(NA,16)
for (itr in 1:16){
p[itr] <- exp(grid[itr,1]*grid[itr,2]+grid[itr,2]*grid[itr,3]+grid[itr,3]*grid[itr,4])

}

# Calculate intercept and adjust probabilities
beta_0 <-log(1/sum(p))
for (itr in 1:16){
p[itr] <- p[itr] * exp(beta_0)

}

# Sample data and fit GLM model
samp <- sample(1:16,prob=p,size=n,replace=TRUE)
count <- rep(NA,16)
for (itr in 1:16){
count[itr] <- length(which(samp==itr))

}
data <- cbind(count,grid)
names(data)[2:5] <- c("X1","X2","X3","X4")
model <- glm(count ~ X1 + X2 + X3 + X4 + .*., data = data, family = "poisson")
summary(model)

The features deemed significant by a t-test are marked with ∗∗∗. The results are consistent with
the true model.
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Table I. Regression summary

Estimate Std. Error z value Pr(>∣z∣)
(Intercept) 2.97703 0.17268 17.241 < 2e-16 ∗∗∗

X1 -0.09754 0.19408 -0.503 0.615
X2 -0.25170 0.20105 -1.252 0.211
X3 0.16575 0.19517 0.849 0.396
X4 -0.09327 0.19281 -0.484 0.629

X1:X2 0.96414 0.16313 5.910 3.42e-09 ∗∗∗

X1:X3 -0.13305 0.17915 -0.743 0.458
X1:X4 0.14144 0.14858 0.952 0.341
X2:X3 1.13321 0.18387 6.163 7.13e-10 ∗∗∗

X2:X4 0.21445 0.17296 1.240 0.215
X3:X4 0.84883 0.16996 4.994 5.90e-07 ∗∗∗
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Problem 9 [10 pts.]

Let X1, . . . ,Xn ∈ Rd. Let Σ be the d × d covariance matrix for Xi. The covariance graph G puts an
edge between (j, k) if Σjk ≠ 0. Here we will us the bootstrap to estimate the covariance graph.

Let Σ have the following form: Σjj = 1, Σj,k = a if ∣j −k∣ = 1 and Σj,k = 0 otherwise. Here, a = 1/4.
Let d = 100 and n = 50. Generate n observations. Compute a 95 percent bootstrap confidence set

for Σ using the bootstrap distribution

P(max
j,k

√
n∣Σ̂∗

jk − Σ̂jk∣ ≤ t ∣ X1, . . . ,Xn).

This gives (uniform) confidence intervals for all the elements of Σjk. For each (j, k), put an edge if the
confidence interval for Σjk excludes 0. Plot your graph. Try this for different values of a. Summarize
your results.

Solution.
An outline on how to approach this problem is given at page 8 of the Graphical Models notes. In
this solution we will use the R package igraph to visualize the covariance graph after the estimate.

require(mvnfast)
require(igraph)

set.seed(7)

# Generate Data
n <- 50
d <- 100
sigma_mat <- toeplitz(c(1, 1/4, numeric(d-2)))
data <- rmvn(n, numeric(d), sigma_mat)
corr_data <- cor(data)

# Run Bootstrap
bootstrap_rep <- 1e+03
stats_boot <- numeric(bootstrap_rep)
for (b in 1:bootstrap_rep) {
data_boot <- data[sample(1:n, replace=TRUE),]
corr_data_boot <- cor(data_boot)
stats_boot[b] =max(abs(corr_data_boot-corr_data))

}

# Calculate Confidence Sets
alpha_cutoff <- quantile(stats_boot,c(0.05))
corr_low <- corr_data - alpha_cutoff
corr_up <- corr_data + alpha_cutoff

# Remove Self-loops
adjacency_mat <- (corr_low > 0| corr_up < 0)
for(i in 1:d){
adjacency_mat[i,i] = 0

}

# Calculate how many are correctly and wrongly recovered
adj_indeces <-which(adjacency_mat==1, arr.ind = TRUE)
adj_diff_abs <- abs(apply(X=adj_ones, MARGIN = 1, FUN = diff))
sum(adj_diff_abs == 1)
sum(adj_diff_abs > 1)
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Figure 1: Covariance graph with a = 1/8,1/4 and 1/2 from top left to center bottom.

# Plotting results
colnames(adjacency_mat) <- rownames(adjacency_mat) <- 1:d
graph <- graph_from_adjacency_matrix(adjacency_mat, mode = "undirected", diag = FALSE)
plot(graph, layout = layout.circle, vertex.size=6, vertex.label.cex=0.6)

With a = 1/4, we recover only 10 out of the of 198 non-zero correlations - excluding the diagonal
entries - and wrongly recovering 18 of them. When a = 1/8 the number of correctly recovered drops
to 2, with the wrongly recovered remaining at 16. When further simulating with different values of
lower a, reducing a seems to be in general leading to worse performance. When a = 1/2 the number
of correctly recovered is 150, with the number of mis-recovered equal to 22. Again using simulations
with values of a close to 1/2, recovery performance seem to be improving in this case. It has to be
noted that a cannot be larger than 1/2 as the covariance matrix in that case would not be positive
definite anymore.

18
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Problem 10 [8 pts.]

Let A ∈ {0,1} be a binary treatment variable and let Y ∈ R be the response variable. Let (Y (0), Y (1))
be the counterfactual variables where Y = AY (1) + (1 −A)Y (0). Assume that

Y = α + γA +
d

∑
j=1

βjXj + ε

where (X1, . . . ,Xd) are confounding variables and E[ε∣X1, . . . ,Xd] = 0. Assume there are no unmea-
sured variables.

(a) (4 pts.) Let θ = E[Y (1)] −E[Y (0)]. Show that θ = γ.

(b) (4 pts.) Suppose now that we do not observe the confounding variables Xj . All we observe is
(A1, Y1), . . . , (An, Yn). Suppose, unaware of the confounding variables, we fit the linear model
Y = α + ρA + δ where E[δ] = 0. Let ρ̂ be the least squares estimator. Show that ρ̂ P

Ð→ γ +∆ for
some ∆. Find an explicit expression for ∆.

Solution.

(a)

θ = E[Y (1)] −E[Y (0)]

= E[E[Y (1)∣X1, . . . ,Xn]] −E[E[Y (0)∣X1, . . . ,Xn]]

= E
⎡
⎢
⎢
⎢
⎢
⎣

E
⎡
⎢
⎢
⎢
⎢
⎣

α + γ +
d

∑
j=1

βjXj + ε
RRRRRRRRRRR

X1, . . . ,Xn

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

−E
⎡
⎢
⎢
⎢
⎢
⎣

E
⎡
⎢
⎢
⎢
⎢
⎣

α +
d

∑
j=1

βjXj + ε
RRRRRRRRRRR

X1, . . . ,Xn

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

α + γ +
d

∑
j=1

βjXj +E[ε ∣X1, . . . ,Xn]

⎤
⎥
⎥
⎥
⎥
⎦

−E
⎡
⎢
⎢
⎢
⎢
⎣

α +
d

∑
j=1

βjXj +E[ε ∣X1, . . . ,Xn]

⎤
⎥
⎥
⎥
⎥
⎦

= α + γ +
d

∑
j=1

βjXj − (α +
d

∑
j=1

βjXj)

= γ

(b)

ρ̂ =
1
n ∑

n
i=1(Yi − Y )(Ai −A)

1
n ∑

n
i=1(Ai −A)2

P
Ð→

Cov(Y,A)

Var(A)
WLLN + conv. thm

=
Cov(α + γA +∑

d
j=1 βjXj + ε,A)

Var(A)

=
γVar(A) +∑

d
j=1 βjCov(Xj ,A) +Cov(ε,A)

Var(A)

= γ +
∑

d
j=1 βjCov(Xj ,A) +Cov(ε,A)

Var(A)

If we assume Cov(ε,A) = 0 then

∆ =
∑

d
j=1 βjCov(Xj ,A)

Var(A)
.
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Problem 11 [8 pts.]

Consider a sequence of time ordered random variables

X1,A1, Y1,X2,A2, Y2,X3,A3, Y3, . . . ,XT ,AT , YT .

Here, the X ′

js are the covariates, the A
′

js are binary treatment variables and the Y ′

j s are the response
of interest. Assume there are no unobserved confounding variables. The DAG for this model has all
directed arrows from the past into the future. That is, the parents for each variables are all variables
in its past, For example, the parent of A1 is X1. The parents of Y1 are (X1,A1). The parents of X2

are (X1,A1, Y1) and so on. Let p denote the joint density of all these variables.

(a) (5 pts.) Find an explicit expression (in terms of p) for

E[YT ∣A1 = a1, . . . ,AT = aT ].

(b) (3 pts.) Find an explicit expression (in terms of p) for

E[YT ∣ set (A1 = a1,A2 = a2, . . . ,AT = aT )].

Solution.

(a) Let par(xj) denote the set of parents of Xj on the DAG, and so on.

E[YT ∣A1 = a1, . . . ,AT = aT ] = ∫ yT p(yT ∣A1 = a1, . . . ,AT = aT )dyT

= ∫ yT
p(yT , a1, . . . , aT )

p(a1, . . . , aT )
dyT

= ∫ yT
∫ ⋯ ∫ p(x1, a1, y1, . . . , xT , aT , yT )dx1⋯dxT dy1⋯dyT−1

∫ ⋯ ∫ p(x1, a1, y1, . . . , xT , aT , yT )dx1⋯dxT dy1⋯dyT
dyT

= ∫ yT
∫ ⋯ ∫ ∏j p(xj ∣par(xj))p(aj ∣par(aj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT−1
∫ ⋯ ∫ ∏j p(xj ∣par(xj))p(aj ∣par(aj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT

dyT

=
∫ yT ∫ ⋯ ∫ ∏j p(xj ∣par(xj))p(aj ∣par(aj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT−1dyT

∫ ⋯ ∫ ∏j p(xj ∣par(xj))p(aj ∣par(aj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT

(b) Using the expression from part (a), we can set A1 = a1,A2 = a2, . . . ,AT = aT by replacing
p(aj ∣par(aj)) for all j = 1, . . . , T with 1. That is,

E[YT ∣ set (A1 = a1,A2 = a2, . . . ,AT = aT )] =
∫ yT ∫ ⋯ ∫ ∏j p(xj ∣par(xj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT−1dyT

∫ ⋯ ∫ ∏j p(xj ∣par(xj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= ∫ yT (∫ ⋯∫ ∏
j

p(xj ∣par(xj))p(yj ∣par(yj))dx1⋯dxT dy1⋯dyT−1)dyT
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Appendix

Theorem 1 Suppose that X = (X(1), . . . ,X(d)) ∼ Nd(µ,Σ). For any X1 ⊂ X and X2 = X/X1,
X2∣X1 follows a multivariate normal distribution.

Proof. We were told we can take this theorem for granted. The parameters that characterize this
multivariate normal distribution are computed in Problem 3(a).

Theorem 2 Suppose that X = (X(1), . . . ,X(d)) ∼ Nd(µ,Σ). For any full-rank A ∈ Rm×d and
b ∈ Rm,

AX + b ∼ Nm(Aµ + b,AΣAT
).

Proof. We use moment generating functions. Let Y = AX + b. The joint moment generating
function of X is

MX(t) = exp (tTµ +
1

2
tTΣt).

Then the joint moment generating function of Y is

MY (t) = exp(tTb)MX(AT t)

= exp(tTb) exp (tTAµ +
1

2
tTAΣAT t)

= exp (tT (Aµ + b) +
1

2
tTAΣAT t),

which is the moment generating function of the joint multivariate normal distribution

Nm(Aµ + b,AΣAT
). ∎

Corollary 3 Suppose that X = (X(1), . . . ,X(d)) ∼ Nd(µ,Σ). Then any p-dimensional subset X̃ of
X follows a multivariate normal distribution

X̃ ∼ Np(µ̃, Σ̃),

where µ̃ is the vector of means of the variables in X̃ ⊆ X and Σ̃ is the sub-matrix of Σ obtained by
deleting the rows and columns corresponding to the variables in X/X̃.

Theorem 4 Suppose that X = (X(1), . . . ,X(d)) ∼ Nd(µ,Σ). Two random-vectors X̃1 ⊂ X and
X̃2 ⊂X are independent if and only if they are uncorrelated.

Proof.
“Ô⇒ ” This is true regardless of the distribution. See [?].
“ ⇐Ô ” By Corollary 2, X̃ = (X̃1, X̃2) ∈ Rq = Rr+s follows a multivariate normal distribution with
density

fX̃(x̃1, . . . , x̃q) =
1

√

(2π)q ∣Σ̃∣

exp ( −
1

2
(x̃ − µ̃)T Σ̃−1

(x̃ − µ̃)), (3)

with

µ̃ = (
µ̃1

µ̃2
) and Σ̃ = (

Σ̃11 0

0 Σ̃22
) ,
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where
X̃1 ∼ Nr(µ̃1, Σ̃11) and X̃2 ∼ Ns(µ̃2, Σ̃22).

In the exponent of (3) we have

(x̃ − µ̃)T Σ̃−1
(x̃ − µ̃)

= (x̃1 − µ̃1, x̃2 − µ̃2)
T
(

Σ̃11 0

0 Σ̃22
)

−1

(x̃1 − µ̃1, x̃2 − µ̃2)

= (x̃1 − µ̃1, x̃2 − µ̃2)
T
(

Σ̃−1
11 0

0 Σ̃−1
22

)(x̃1 − µ̃1, x̃2 − µ̃2)

= (x̃1 − µ̃1)
T Σ̃11(x̃1 − µ̃1) + (x̃2 − µ̃2)

T Σ̃22(x̃2 − µ̃2).

Hence, (3) factorizes as follows

fX̃(x̃1, . . . , x̃q)

=
1

√

(2π)q ∣Σ̃∣

exp ( −
1

2
(x̃ − µ̃)T Σ̃−1

(x̃ − µ̃)))

=
1

√

(2π)r+s∣Σ̃11∣∣Σ̃22∣

exp ( −
1

2
(x̃1 − µ̃1)

T Σ̃11(x̃1 − µ̃1) + (x̃2 − µ̃2)
T Σ̃22(x̃2 − µ̃2))

=
1

√

(2π)r ∣Σ̃11∣

exp ( −
1

2
(x̃1 − µ̃1)

T Σ̃11(x̃1 − µ̃1)) ⋅
1

√

(2π)s∣Σ̃22∣

exp ( −
1

2
(x̃2 − µ̃2)

T Σ̃22(x̃2 − µ̃2))

= fX̃1
(x̃1)fX̃2

(x̃2). ∎
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