Carnegie Mellon University, Department of Statistics

36-708 Statistical Methods for Machine Learning
Homework #1 Solutions

February 1, 2019

Problem 1 [15 pts.]

Let Xy,...,X,, ~ P where X; € [0,1] and P has density p. Let p be the histogram estimator using
m bins. Let h = 1/m. Recall that the Lo error is [(p(z) - p(x))? = [ p?(x)dz - 2 [ p(z)p(x)dz +
/ p?(z)dz. As usual, we may ignore the last term so we define the loss to be

L(h) =/f)‘2(x)dm—2fﬁ($)p(:p)dx.

(a) Suppose we used the direct estimator of the loss, namely, we replace the integral with the
average to get

L) = [ F)de - 3p(X).

i

Show that this fails in the sense that it is minimized by taking h = 0.

(b) Recall that the leave-one-out estimator of the risk is
—~ _9 2 .
L(h) = [ PPa)de == T (X0),
(2

Show that
2 n+1

(n-1)h n2(n-1)h 27

J

L(h) =

where Z; is the number of observations in bin j.

Solution.
Define | n
0;==>1(X;eB;) and Z; =nb,
ni=1
for j=1,...,m.
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(a) (7 pts.)

£ = [Py 2 S p(x)

—~ 2
1 m g, 2.,m
:fo (Z#]l(xEBJ)) de-=3"% -21(X; € B;)
j=1 i=1j=1
1 1 m m agm __ 12
:ﬁfo > Y00z e BinBy) |do -3 3205~ Y. U(X. € By)
k=1j=1 7=1 i=1
:ﬁfo ZHJ]I(xGBJ))dx—EZGJ
7=1 7=1
1 & 1l 2G5
-2 [ (e Byde- ) T
1o, 2m
==-S02-2%9
1™,
=——%'9
p 20
1 m
- Y72
thJZ::l J

So L(h) - —oo as h — 0. Therefore, this loss is minimized by taking h = 0.

(b) (8 pts.)
From part (a) we have

And the second term in the leave-one-out loss is

gi@—i)“i) S - i il(X e B;) Y 1(Xy € B))
=1 n(7l 1) j=li=1 k#i
- T 2 S (X < ) (0 - (X, € By)
n(n 1)h a4
- Ty LU ).

n(n-1)h
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Taking the difference of (1) and (2), we get

]1
i@ +§:’H2 E—
(n 1) j=1 ! j=1 \h (n-1)h
—
=1
2 n+1 mﬁz
= 0
(n-1)h (n- 1)h]2 J
2 n+1 EZJQ

T (n-1)h n2(n-1)h

Problem 2 [15 pts.]
Let P be the kernel density estimator (in one dimension) with bandwidth h = h,. Let s2(x) =
Var(pp ().

(a) Show that _
1% ~ N(0,1)
where pp(z) = E[pp(2)].

Hint: Recall that the Lyapunov central limit theorem says the following: Suppose that Y7, Y5, ...
are independent. Let y; = E[Y;] and o? = Var(Y;). Let s2 = ¥, 2. If

n—-oo

1 5
lim 52_+5;E[|Y£—M|2+ 1=
1=

for some § > 0. Then s,* ¥, (Y; — 1) ~ N(0,1).

(b) Assume that the smoothness is 5 = 2. Suppose that the bandwidth h,, is chosen optimally.

Show that
Do) =P(T) (). 1)
Sn(x) 7

for some constant b(z) which is, in general, not 0.

Solution.

(a) [8 pts.
Caveat: The classical Central Limit Theorem cannot be applied here, as h = h, is a function
of n and thus the K(Hm_h—X’H) are not identically distributed. However, as the hint suggests, the

Lyapunov CLT still holds for non-identically distributed random variables.

1

Claim. Let p>1. Then

%K(@) - pa(x)

3
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Proof. See appendix

Now
1 (le-x0\ w@| ] 1 [ (e - x| e
T — 7 Pr\T T — 7
E|| =K - = —E||-K[ =2 -
1
= ®(n2+6h1+6 )’
and
v M1 (le-X0) pa(@)|
2ol | L g 2= Xl ) a2
o Z; nh h n
Ll (- X i
z-Xi
n[h( - )Ph(ﬂf)]
1
=0 —|.
Therefore,
el (le-x\ m@)] 1
T — Xy Pr(x _ 1+2
82+6;E[ %K( h )_ n ]—@((nh) +2)'n'@(n2+6h1+5)
=0((nh)"%)
-0,

as n — oo and nh — oo, for any § > 0. So, by the Lyapunov CLT,

Pu(z) - pr(7)

(@) ~ N(0,1).

(b) [7 pts.] First note

Pu(z) —p(x) _ Pr(x) - pr(z) . pr(z) - p(x)
sn() sn () sn(T)
_ Du(x) —pu(x) . Bias(pp(x))

sn () VVar(p(z))

From Theorem 5, the optimal bandwidth is h,, = ©(n~/%).

Now from part (a), we have

1

Var(pp(z)) ZG(E)

and from Lemma 3,

Bias(py()) = O(h%).
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Therefore,

Pu(z) —p(z) _Pr(z) —pn(z) = Bias(pn(z))

sn(x) sn() Var(pp(x))

_ Pu(z) — pr(x) . o(h?)
) e )

_ Pu(z) -~ pr() . O(n™?)
sn(x) @(n—z/s)

_ Pu(x) —pi(2)

= @) +0(1)
~N(0,1)

~ N(b(x),1).

Problem 3 [10 pts.]

Let X1,...,X, ~ P where X; € [0,1]. Assume that P has density p which has bounded continuous
derivative. Let pj,(x) be the kernel density estimator. Show that, in general, the bias is of order O(h)
at the boundary. That is, show that E[p,(0)] - p(0) = Ch for some C > 0.

Solution.

“hJo
1/h
- fo K(t)p(ht)dt let ¢ = %

- fo”h K(t)(p(O) + ht - 0,p(0) + ? L 92p(0) + o(h2))dt

:p(O)fol/hK(t)dt+O(h)fol/htK(t)dt+O(h2)j:/thK(t)dt

| S —
SO%(/2<00

<p(0) +O(h),

where we assumed K (-) is supported on [-1,1], h <1, and fol/h tK (t)dt is bounded.
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Problem 4 [10 pts.]

Let p be a density on the real line. Assume that p is m-times continuously differentiable and that
[P < 0o. Let K be a higher order kernel. This means that [ K(y)dy = 1, [y’ K (y)dy = 0 for
1<j<m-1, [ |y|"K(y)dy < oo and [ K?(y)dy < co. Show that the kernel estimator with bandwidth
h satisfies

E [ (pe) - pla))?da < C(% N h2m)

for some C' > 0. What is the optimal bandwidth and what is the corresponding rate of convergence
(using this bandwidth)?

Solution.

We assume p has bounded m derivatives, and so p € ¥(m, L) for some constant L >0 € R. Let’s
first analyze the bias b(x):

B - p(0) - 1 3 1 (22)] st

-5 (7)) -
- [ 38 (5 pdu=pa)

h
- [ K@= myie-p(o) where - 2=
22 vmel
= [ K (t) [P(ﬂﬂ) —thp'(z) + %p"(m) o+ %p(m—l)(gj)
+ (—::Ll‘)mp(m)(w)]dt -p(z) w € ( - th, ), Taylor Exp.

Given [ K(y)dy =1, then [ K (t)p(x)dt = p(x) and [y K(y)dy =0 for 1 <j <m -1, so we are
left with:

(~th)™
Ty ”

/[ K(t)tmdt‘

Lhm .
[|K(t)||t| dt = Ch for some 0 < C' < oo

E) -0l | [ K0 wa

Lhm ‘

And so we have that [ b(m)zdaz < C'h?™ for some 0 < C' < oo .
Analyzing now the variance we have that:
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v - (150w ()

i=1

o

1 = 2
- — f K (= ) p(x)dx
| _
= — [ K (t)? p(x - th)dt where £ = *—
nh h
144
< sup,, p(z) / K (t)2 dt < C_ for some 0 < C" < oo

Since densities in 3(m, L) are uniformly bounded.
The optimal bandwidth is therefore:

(2 +h2m 1
M =0 = ——— +2mh* =0 = K* = (2mn)_ﬁ < T

oh nh?
And so the convergence rate is:

]E[f(ﬁ(:c) ‘P(x))ngg] -

Problem 5 [15 pts.]

Let X1,...,X,, ~ P where X; € [0,1] and P has density p. Let ¢1,¢2,... be an orthonormal basis for
L»[0,1]. Hence fol d)?(a:)da: =1 for all j and [01 ¢ (x)pr(x)dx = 0 for j # k. Assume that the basis
is uniformly bounded, i.e. sup;supge,<q[¢;(x)| < C < co. We may expand p as p(z) = X732 Bj¢;(x)
where 8, = [ ¢j(z)p(x)dz. Define

k
p(z) = ;@%(@

where B; = (1/n) ¥ty ¢;(X).
(a) Show that the risk is bounded by

o0

ck
—* 2 5;

j=k+1

for some constant ¢ > 0.

(b) Define the Sobolev ellipsoid E(m, L) of order m as the set of densities of the form p(z) =
Y521 Bj¢j(x) where Y72y [5’32»3'27” < L?. Show that the risk for any density in E(m, L) is bounded
by ¢[(k/n)+(1/k)?>™]. Using this bound, find the optimal value of k£ and find the corresponding
risk.

Solution.
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(a) (10 pts.)
First note,

ElF] - E[% ﬁ;wx»]
- E[0;(2)]
= [ p(@)os(@)da
= B;.

So ,/B\] is unbiased. Now,
R(p(x)) = E [ pe) - p(x))’d ]

=E

T

(f ¢;(x) - Zm(m )2 ]

X 2
=E /(Zl( Bj)oi(x) - Z ﬁ]gﬁ](a:)) d$]

j=k+1

k
-E Z B;)? + Z ] since /¢i¢j:51]

| j=1 j=k+1

(b) (5 pts.)

sup R(p(x)) < — + Z 62 from part (a)
peE(m,L) n j=k+1
c2 k" Xkl 5]2
= +
n k2m
C% L3241 577"
+
n k2m
C’k  L?
< — + ——
n k2m

k 1
< C? LA =+ —
max{ }(n + ka)

Optimal & (up to some constant) can be found by, = 2 which is, k = O(n"/™*1D) And the

= o, W
corresponding risk is of the rate,O(n~ 2"‘/(27”+1))
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Problem 6 [35 pts.]

Recall that the total variation distance between two distributions P and Q is TV(P, Q) =supy |P(A)-
Q(A)|. In some sense, this would be the ideal loss function to use for density estimation. We only
use Lo because it is easier to deal with. Here you will explore some properties of TV.

(a) Suppose that P and @ have densities p and ¢q. Show that
TV(P.Q) = (1/2) [ Ip(@) - g(w)lda.

(b) Let T be any mapping. Let X and Y be random variables. Then

Sjp\P(T(X) eA)-P(T(Y)eA)|< sgp]P(X e A)-P(Y € A)|.

(c) Let K be a kernel. Recall that the convolution of a density p with K is (px K)(z) = [ p(2) K (z-

z)dz. Show that
flp*K—q*K\SflKlflp—q\-

Hence, smoothing reduces L; distance.

(d) Let p be a density on R and let p,, be a sequence of densities. Suppose that [(p - p,)* - 0.
Show that [ |p—pn|— 0.

(e) Let p be a histogram on R with binwidth h. Under some regularity conditions it can be shown

that Y
2 1
5 [ orals 2 [ Vi g [
lp = pal p— @+4 p'|

Hence, this risk can be unbounded if [ /p = co. A density is said to have a regularly varying
tail of order r if limy o p(tx)/p(x) =t" for all ¢ > 0 and limy—,_o p(tz)/p(x) = t" for all ¢ > 0.
Suppose that p has a regularly varying tail of order r with r» < =2. Show that the risk bound
above is bounded.

Solution.

(a) (10 pts.)
For any measurable B € R,
3 [ Ip-d=5 [ @ - a@lda
25 [o@-a@)ds+3 [ (o) =)o
-5 fp@ia=5 [a@doss [ oo [ s
:%/Bp(x)dx—%qu(x)dx+%(1—qu(a:)dx)—%(l—pr(x)d$)

:(pr(x)dx—qu(x)d:L')

= P(B) - Q(B)
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1
= 5 / Ip-q| > P(B)-Q(B) for any measurable B c R.

> [o-d=3 [la-p]
5 pq—2 q—Dl,

1
B f lp-q|>Q(B)- P(B) for any measurable B ¢ R.

By noting,

parallel reasoning shows

So together we have,

1

5 [ p-dl>|P(B)-Q(B)
and thus

: (3)

1
> [ lp-dl>sup|P(B) - Q(B)
BcR
for any measurable B € R.

Now consider the set
B'={zxeR: p(z)>q(x)}.

B’ is measurable and

5 [=d=5 [ 1) - a@las

-5 L@ =a@)dz+ 3 [ (@) -p(a))is

1 1 1 1
_ - d ——f d —f do— = d
2f3fp(x) vy Jpd@dreg fo pa@de =g o p(@)de

:%-[B,p(aj)dx—%/B,q(:n)dx-i-%(I—L,Q(x)dx)_%(1_f]3,p(x)dx)

:(‘/B/p(x)dx—‘/B/ q(:c)dac)
- P(B) - Q(B).
= |P(B") - Q(B")|.

We have found a set B’ ¢ R such that

> [ -al=|P() @B

)

therefore,
1
> [ lp-dl <sup|P(B) - Q(B)| )
BcR

Combining (3) and (4), we have

TV(PQ)=; [l

(b) (5 pts.)
Let F be the o-field generated by the sets A on the sample space €2, and

C=T(F)={T(A): AeF}.

10
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Define T71(C) = {w € Q: T(w) € C}, i.e. the pre-image mapping. By definition,
T7YC)={T"Y(C): CeClc F.

Then,
sup ‘P(T(X) eC)-P(T(Y)e€ C’)| =  sup ‘P(X eA)-P(Y € A)‘
CeC AeT-1(C)
< sup [P(X e A) - P(Y € 4)|.
AeF
(c) (5 pts.)

/|p*K—(J*K|=/|fp(z)K(:):—z)dz—[q(z)K(x—z)dzdac

-/ | [ (=) - a(2) K (- 2)dz|da

< [ [ b - a@lIK (- 2)ldzda

S[f]p(z)—q(z)”K(a;—z)]dxdz Fubini’s theorem
- [ (o) -a(2)| [ 1K (@=2)ldr)a
:f(|p(z)—q(z)|/|K(:c)|da:)dz invariant to translation

- [IK@)lde [ 1p(z) - a(=)ld

=f|K|f|p—(J|

(d) (10 pts.) Here we can further assume that the density has bounded support, see appendix for
a proof without this assumption. By Cauchy inequality,

(flp—pn\)QSf(p—pn)Qf12*0,

where [ 12 is finite because density has bounded support.

(e) (5 pts.) We need to show that the integral is finite, [ \/p < +o0.

First, the regularly varying tail condition can be translated (not rigorously) as an expression
for large value =z,
p(te) = t"p(x), V|z[ > B,

where B > 0 is a constant. Then we decompose the integral into three parts,

LMZAKBMJF[QBMJF[MBW’

where the first term, integrating on bounded region, is finite. In the following, we argue that
the second term fsz \/p(x) is finite, and the third term is also finite using similar argument.
By substituting variable x = Bt, and using regularly varying tail condition, the second term is,

Since r < -2, the integral, [, t/2dt, is finite.

11
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Appendix

Proof of Claim in Problem 2.

From 55|af - |bP < |a - bP < 2P|af + 2P|bP, we have
2PE(|ZiP] - pu(2)” <E[|Zi — pr(2)P] < 2°E[| Zi"] + 2°pn(2)".

Then,

Bl|zP)= o [ |K|p(@)p<u>du

1
- — [ IKP(olp(o + ho)do.
So as h 0, choose any [a,b] such that |[KJ?(Jv]) >0 for some v ¢ [a.], then [ [K|P(Jv])p(a +

hv)dv > [ab|K|p(Hv|| Yp(x + hv)dv - fab\K\p(HvH )p(x)dv > 0 by the Bounded Convergence Theorem.
Also, [|KP([v)p(z +hv)dv < [ [KP([Jo]) sup, p(x)dv < oo, hence [ |K[P([v])p(z + hv)dv = ©(1),

and accordingly,
1
E[1Z:p] - @(W)-

pn(2)| = [E[Z:]| < E[|Zi]] = O(1).

Then

Hence

@(%) = 2PE[|Zi] - pr(2)? <E[|Z; - pr(2)"] < 2PE[|ZP] + 2Ppp ()" = @(%)

which implies

E[|Z: - p(a)l"] = @(,%)

Proof for Problem 6 (d).

First by [(p-pn)* = 0, we claim p, — p,a.s.
It’s because by contradiction, if there exist set A with [ 14 > 0 such that p,(x) +» p(z),Vz € A,

then f(p_pn)2 2 fA(p_pn)2 > 0.

Then note that [ |p - py| is bounded,

fOSf!p—pnléfpwn:Z.

Thus by Dominated convergence theorem,

[ ip=pal > [ Qimlp-pu) =o0.

12



