Assignment 2
10/36-702
Due Friday Feb 19 3:00 pm

1. In this question we will study £-nearest neighbors regression. Consider data (x1,Y71),...(x,,Yn) €
R? x R. To make things simpler, we will assume that x1,...x, are fixed (non-random).
Further, we assume that

Y; =m(x;)+e¢;, E(e;)=0, Var(ei)zaz, i=1,...n.

The knn regression estimator is

I’/)’\L(x): 1 Z Yi

€N (x)

where A% (x) contains the indices of the & x;’s closest to x.

(a) Show that, at any fixed x € R?,

1 2 2
E(me)-m@) = (7 ¥ (mGx)-m()) +—.
LEN(x)

(b) Assume that x1,...x, € [0,1]¢ and are distributed on a uniform grid, over this d-
dimensional unit cube. Show that for any i € A44(x),
k\1/d
i —xl<C(=)
n
for some constant C that depends only on d but not on n or k. Assume further that
nY? and £V? are both integers. Suppose that m is Lipschitz with constant L:

Im(y) —m(x)| < L[|y —xI|

for all x, y. Show that

o2

R 9 ok \2/d
E(m(x) - m(x))? < (CL) (;) e

(c) Choose % by optimizing the upper bound in part (b). Then plug in this value of & to
the upper bound to derive a mean squared error bound for m(x).

2. In this question you will verify the leave-one-out cross-validation formula for kernel
regression. (It holds for other linear smoothers too.) Let S;; = K(X;,X;)/ Y.} | K(X;,X).
(For simplicity I am suppressing the bandwidth.) Let m_;) be the kernel regression
estimator obtained by leaving out (X;,Y;).



(a) Show that m_(X;) =X"7_, S;;Z; where

5 Y j#i
T menX) =i

(b) Now show that
m(X;)—mep(X;) =8S;;(Y; —mipy(Xi)).
Hence,
R Y, —-mX;)
Yi-mpX;)= ll_—S”l
Conclude that

12 18 (Y —mX;))?
=Y Vi -mepX)P==) —) )
ni:1( P l)( i) n,;zl( 1-S;;

. Let Y =(Yq,...,Y,) € R" and let X be then n x d design matrix so that X(i,j) = X;()).
Suppose that X has orthonormal columns so that X7 X = I where I is the d x d identity
matrix.

(a) Show that the least squares solution is = XTY.
(b) Let B minimize

1
1Y =XBI5+ AllBllo.
Let v; be the J*™ column of X. Show that the solution is

v}'Y if v}\( > V27
pi=10  ifvlvel-v22,v21], j=1,...d.
oTY ifolY<-v21

This is called the hard thresholding estimator.

Remark: If we had used the ¢; loss, the solution would have been the soft-
thresholding estimator §; = S)(v7Y) where

u—-2A ifu>A>2
Sp(u)=<0 ifuel-A,A], j=1,...d.
u+Ad ifu<-2

Proving this requires knowledge of basic convex analysis, especially subgradi-
ents.



4. Consider regression data (X1,Y7),...,(X,,Y,) where X € [0,1]9. Assume also that

|Y;| < B < oo for some B. Assume that X; has a density p and that inf vel0,114 px)=c>0.

Let £ be an integer. Divide [0,11¢ into cubes Cq,...,Cy with length of size h = 1/k.
Here, N = k<. For x € C; define

ZiYiI(Xi ECJ')
YiIX;eC))

m(x) =

Assume that m is Lipschitz.

(a) Show that, if nh? — co then the probability that there exists a cube with no data
in it, tends to 0 as n — oo.

(b) Bound the MSE of 7i(x). (You may assume there are no empty cubes for this part.)

. Consider data (X1,Y7),...,(X,,Y,) where X; €[0,1] and Y; € R. Suppose that
Y, =m(X;)+e;

where El¢;|X;1=0, [E[e?] < oo, and m € L9[0,1]. Let y¢1,y9,... be an orthonormal basis.
Assume that max;sup, |y (x)| = C <oo. Hence,

m(x) =) By ;(x)
J

where 3, = fol ¥ j(x)m(x)dx. Suppose that X; has a density p and that inf,¢[g 1) p(x) > 0.
(a) Suppose the density p is known. Define

k
)=y Bjw(x)
j=1

where

_ Yiwi(X;)
Z‘ p(X;)

12

Find an upper bound on E fol(ﬁ(x)—m(x))2dx when }_; ,6? 724 < C?. Find %, to minimize
your upper bound.

(b) Now suppose that p is not known. In this case we can use the same estimate except

that You (X
& iYL
,Bj == Z T v
n5 pX;)
where p is an estimate of the density. Assume that ||p— pllec = Op(r,) where r,, = o(1).
Show that 7i(x) is consistent as long as r,k, = o(1).



