
Boosting

(Following Mohri, Rostamizadeh and Talwalkar.)

Let Zi = (Xi, Yi) where Yi ∈ {−1,+1}. Boosting is a way to combine weak classifers into
a better classifier. We make the weak learning assumption: for some γ > 0 we have an
algorithm returns h ∈ H such that, for all P ,

P (R(h) ≤ 1/2− γ) ≥ 1− δ

where γ > 0 is the edge.

Let us recall the AdaBboost algorithm:

1. Set D1(i) = 1/n for i = 1, . . . , n.

2. Repeat for t = 1, . . . , T :

(a) Let ht = argminh∈H PDt(Yi 6= h(Xi)).

(b) εt = PDt(Yi 6= ht(Xi)).

(c) αt = (1/2) log((1− εt)/εt).
(d) Let

Dt+1(i) =
Dt(i)e

−Yiαtht(Xi)

Zt
where Zt is a normalizing constant.

3. Set g(x) =
∑

t αtht(x).

4. Return h(x) = signg(x).

Training Error. Now we show that the training error decreases exponentially fast.

Lemma 1 We have
Zt = 2

√
εt(1− εt).

Proof. Since
∑

iDt(i) = 1 we have

Zt =
∑
i

Dt(i)e
−αtYiht(Xi) =

∑
Yiht(Xi)=1

Dt(i)e
−αt +

∑
Yiht(Xi)=−1

Dt(i)e
αt

= (1− εt)e−αt + εte
αt = 2

√
εt(1− εt).

since αt = (1/2) log((1− εt)/εt). �
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Theorem 2 Suppose that γ ≤ (1/2)− εt for all t. Then

R̂(h) ≤ e−2γ
2T .

Hence, the training error goes to 0 quickly.

Proof. Recall that D1(i) = 1/n. So

Dt+1(i) =
Dt(i)e

−αtYiht(Xi)

Zt
=
Dt−1(i)e

−αt−1Yiht−1(Xi)e−αtYiht(Xi)

ZtZt−1

= · · · = e−Yi
∑

t αtht(Xi)

n
∏

t Zt
=
e−Yig(Xi)

n
∏

t Zt

which implies that

e−Yig(Xi) = nDT+1(i)
∏
t

Zt. (1)

Since I(u ≤ 0) ≤ e−u we have

R̂(h) =
1

n

∑
i

I(Yig(Xi) ≤ 0) ≤ 1

n

∑
i

e−Yig(Xi) =
1

n

∑
i

n(
∏
t

Zt)DT+1(i) =
T∏
t=1

Zt

=
∏
t

2
√
εt(1− εt) =

∏
t

√
1− 4(1/2− εt)2

≤
∏
t

e−2(1/2−εt)
2

since 1− x ≤ e−x

= e−2
∑

t(1/2−εt)2 ≤ e−2γ
2T .

�

Generalization Error. The training error gets small very quickly. But how well do we do
in terms of prediction error?

Let

F =

{
sign(

∑
t

αtht) : αt ∈ R, ht ∈ H

}
.

For fixed h = (h1, . . . , hT ) this is just a set of linear classifiers which has VC dimension T .
So the shattering number is (en

T

)T
.

If H is finite then the shattering number is(en
T

)T
.|H|T .
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If H is infinite but has VC dimension d then the shattering number is bounded by(en
T

)T (en
d

)dT
� nTd.

By the VC theorem, with probability at least 1− δ,

R(ĥ) ≤ R̂(h) +

√
Td log n

n
.

Unfortunately this depends on T . We can fix this using margin theory.

Margins. Consider the classifier h(x) = sign(g(x)) where g(x) =
∑

t αtht(x). The classifier
is unchanged if we multiply g by a scalar. In particular, we can replace g with g̃ = g/||α||1.
This form of the classifier is a convex combination of the ht’s.

We define the margin at x of g =
∑

t αtht by

ρ(x) =
yg(x)

||α||1
= yg̃(x).

Think of |ρ(x)| as our confidence in classifying x. The margin of g is defined to be

ρ = min
i
ρ(Xi) = min

i

Yig(Xi)

||α||1
.

Note that ρ ∈ [−1, 1].

To proceed we need to review Radamacher complexity. Given a class of functions F with
−1 ≤ f(x) ≤ 1 we define

Rn(F) = Eσ

[
sup
f∈F

1

n

∑
i

σif(Zi)

]
where P (σi = 1) = P (σi = −1) = 1/2. If H is finite then

Rn(H) ≤
√

2 log |H|
n

.

If H has VC dimension d then

Rn(H) ≤
√

2d log(en/d)

n
.

We will need the following two facts. First,

Rn(conv(H)) = Rn(H)
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where conv(H) is the convex hull of H. Second, if

|φ(x)− φ(y)| ≤ L||x− y||

for all x, y then
Rn(φ ◦ F) ≤ LRn(F).

The set of margin functions is

M = {yf(x) : f ∈ conv(H)}.

We then have
Rn(M) = Rn(conv(H)) = Rn(H).

A key result is that, with probability at least 1− δ, for all f ∈ F ,

E[f(Z)] ≤ 1

n

∑
i

f(Zi) + 2Rn(F) +

√
2 log(1/δ)

n
. (2)

Now fix a number ρ and define the margin-sensitive loss function

φ(u) =


1 u ≤ 0

1− u
ρ

0 ≤ ρ

0 u ≥ ρ.

Note that
I(u ≤ 0) ≤ φ(u) ≤ I(u ≤ ρ).

Assume that H has VC dimension d. Then

Rn(φ ◦M) ≤ LRn(M) ≤ LRn(H) ≤ 1

ρ

√
2d log(en/d)

n
.

Now define the empirical margin sensitive loss of a classifer f by

R̂ρ =
1

n

∑
i

I(Yif(Xi) ≤ ρ).

Theorem 3 With probability at least 1− δ,

R(g) ≤ R̂ρ(g/||α||1) ≤
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.
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Proof. Recall that I(u ≤ 0) ≤ φ(u) ≤ I(u ≤ ρ). Also recall that g and g̃ = g/||α||1 are
equivalent classifiers. Then using (2) we have

R(g) = R(g̃) = P (Y g̃(X) ≤ 0) ≤ 1

n

∑
i

φ(Yig̃(Xi)) + 2Rn(φ ◦M) +

√
2 log(2/δ)

n

≤ 1

n

∑
i

φ(Yig̃(Xi)) +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n

= R̂ρ(g/||α||1) +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

�

Next we bound R̂ρ(g/||α||1).

Theorem 4 We have

R̂ρ(g/||α||1) ≤
T∏
t=1

√
4ε1−ρt (1− εt)1+ρ.

Proof. Since φ(u) ≤ I(u ≤ ρ) we have

R̂ρ(g/||α||1) ≤
1

n

∑
i

I(Yig(Xi)− ρ||α||1 ≤ 0)

≤ eρ||α||1
1

n

∑
i

e−Yig(Xi)

= eρ||α||1
1

n

∑
i

nDT+1(i)
∏
t

Zt = eρ||α||1
∏
t

Zt

=
T∏
t=1

√
4ε1−ρt (1− εt)1+ρ

since Zt = 2
√
εt(1− εt) and αt = (1/2) log((1− εt)/εt). �

Assuming γ ≤ (1/2 − εt) and ρ < γ then it can be shown that
√

4ε1−ρt (1− εt)1+ρ ≡ b < 1.

So R̂ρ(g/||α||1) ≤ bT . Combining with the previous result we have, with probability at least
1− δ,

R(g) ≤ bT +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

This shows that we get small error even with T large (unlike the earlier bound based only
on VC theory).
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