Boosting

(Following Mohri, Rostamizadeh and Talwalkar.)

Let Z; = (X;,Y;) where Y; € {—1,+1}. Boosting is a way to combine weak classifers into
a better classifier. We make the weak learning assumption: for some v > 0 we have an
algorithm returns h € H such that, for all P,

P(R(h) <1/2—7)>1-6

where v > 0 is the edge.

Let us recall the AdaBboost algorithm:

1. Set Dy(i) =1/nfori=1,...,n.
2. Repeat fort=1,...,T:
(a) Let hy = argming, 4 Pp,(Y; # h(X))).
(b) e = Pp, (Vi # h(X;)).
(c) ar = (1/2)log((1 — €)/€).
)

d) Let

Dt<i)e—Yi0¢tht(Xi)
Zy

Dy (i) =
where Z; is a normalizing constant.

3. Set g(z) = >, auhy(x).
4. Return h(z) = signg(z).

Training Error. Now we show that the training error decreases exponentially fast.

Lemma 1 We have
Zt = 2 Et(]_ — Et)'

Proof. Since ), D;(i) = 1 we have
Zy =Y Dyi)e XD = N Dyi)e™ + Y Dy(i)e™

Yiht(X;)=1 Yihe(X;)=—1

=(1—e)e ® +e™ =2v/e(l —&).
since oy = (1/2) log((1 — &) /e). O



Theorem 2 Suppose that v < (1/2) — €; for allt. Then

R(h) < e T,

Hence, the training error goes to 0 quickly.

Proof. Recall that D;(i) = 1/n. So
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Since I(u < 0) < e ™ we have
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Generalization Error. The training error gets small very quickly. But how well do we do
in terms of prediction error?

Let
F = {Sign(Zatht) o €ER, hy € 7-[}
t

For fixed h = (hy, ..., hy) this is just a set of linear classifiers which has VC dimension 7.
So the shattering number is
(7)
)

If H is finite then the shattering number is

()
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If H is infinite but has VC dimension d then the shattering number is bounded by
(5 () o
T d -
By the VC theorem, with probability at least 1 — ¢,

o Tdl
R(h) < R(h) + ;g".

Unfortunately this depends on 7. We can fix this using margin theory.

Margins. Consider the classifier h(z) = sign(g(z)) where g(x) = >, ayhy(x). The classifier
is unchanged if we multiply g by a scalar. In particular, we can replace g with g = g/||a]l.
This form of the classifier is a convex combination of the h;’s.

We define the margin at x of g =), auhy by

!

_yy(z

p(@)
Think of |p(x)| as our confidence in classifying x. The margin of ¢ is defined to be

Yig(X;
p = min p(X;) = min gl )
i i lelh

Note that p € [-1,1].

To proceed we need to review Radamacher complexity. Given a class of functions F with
—1 < f(x) <1 we define

where P(o; =1) = P(o; = —1) = 1/2. If H is finite then

21
Ro(H) < M‘
n
If H has VC dimension d then
R (H) < M

We will need the following two facts. First,
R(conv(H)) = R,(H)
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where conv(#) is the convex hull of H. Second, if

[9(x) — d(y)| < Ll — yl|

for all x,y then
Ru(¢poF) < LRy (F).

The set of margin functions is
M={yf(z): f € conv(H)}.
We then have
Rp(M) =R, (conv(H)) = R.(H).
A key result is that, with probability at least 1 — ¢, for all f € F,

21log(1/9)

Zf ) 4+ 2R (F) +

Now fix a number p and define the margin-sensitive loss function

1 u <0
Pu)=q1-% 0<p
0 u > p.

Note that
I(u<0) < ¢(u) < I(u < p).

Assume that H has VC dimension d. Then

Ro(60 M) < LRA(M) < LR () <+ 212D,

)

Now define the empirical margin sensitive loss of a classifer f by

= S I(X) < ).

Theorem 3 With probability at least 1 — 06,

R(9) < Ry(g/llal) <

p n

\/2dlog(en/d) \/210g(2/6).



Proof. Recall that I(u < 0) < ¢(u) < I(u < p). Also recall that g and g = g/||a]|; are
equivalent classifiers. Then using (2) we have

R(g) = R(g9) = P(Yg(X Z¢ Yig(X;)) 4+ 2R (¢ o M) + 210%52/5)
LS v ddlog(enfd) | [Zloa(2]0)
< ;;mmxm# ( +\/ (
Ruofllally + 12D [2lonC/o)

O

Next we bound ﬁp(g/||a||1).

Theorem 4 We have

Ryfafllelh) < [T Jae (1= ey,

Proof. Since ¢(u) < I(u < p) we have
Ry(g/lle]0) Zf Yig(Xi) — pllely < 0)
< epuaulﬁ Z o Yig(X0)
_ 60041% ZHDTH(Z') [ % = el Hzt

t
—H\/4€ 1—€t1+p

since Z; = 2¢/e(1 — ) and oy = (1/2)log((1 — €;)/e;). O

Assuming v < (1/2 — ¢;) and p < v then it can be shown that \/462_'0(1 —e)tr=b< 1.
So ]?ip(g /llal]1) < b%. Combining with the previous result we have, with probability at least

1—9,
r 1 [2dlog(en/d) 21log(2/96)
R(g) <0 +;\/—n +\/—.

n

This shows that we get small error even with T large (unlike the earlier bound based only
on VC theory).



