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Chapter 36

Minimax Theory

Minimax theory provides a rigorous framework for establishing the best pos-
sible performance of a procedure under given assumptions. In this chapter
we discuss several techniques for bounding the minimax risk of a statistical
problem, including the Le Cam and Fano methods.

36.1 Introduction

When solving a statistical learning problem, there are often many procedures to choose
from. This leads to the following question: how can we tell if one statistical learning
procedure is better than another? One answer is provided by minimax theory which is a set
of techniques for finding the minimum, worst case behavior of a procedure.

In this chapter we rely heavily on the following sources: Yu (2008), Tsybakov (2009)
and van der Vaart (1998).

36.2 Definitions and Notation

Let P be a set of distributions and let X
1

, . . . , Xn be a sample from some distribution
P 2 P . Let ✓(P ) be some function of P . For example, ✓(P ) could be the mean of P , the
variance of P or the density of P . Let b✓ =

b✓(X
1

, . . . , Xn) denote an estimator. Given a
metric d, the minimax risk is

Rn ⌘ Rn(P) = inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] (36.1)

where the infimum is over all estimators. The sample complexity is

n(✏,P) = min

n

n : Rn(P)  ✏
o

. (36.2)
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846 Chapter 36. Minimax Theory

36.3 Example. Suppose that P = {N(✓, 1) : ✓ 2 R} where N(✓, 1) denotes a Gaussian
with mean ✓ and variance 1. Consider estimating ✓ with the metric d(a, b) = (a� b)2. The
minimax risk is

Rn = inf

b✓
sup

P2P
EP [(

b✓ � ✓)2]. (36.4)

In this example, ✓ is a scalar. 2

36.5 Example. Let (X
1

, Y
1

), . . . , (Xn, Yn) be a sample from a distribution P . Let m(x) =
EP (Y |X = x) =

R

y dP (y |X = x) be the regression function. In this case, we might
use the metric d(m

1

,m
2

) =

R

(m
1

(x)�m
2

(x))2dx in which case the minimax risk is

Rn = inf

bm
sup

P2P
EP



Z

(bm(x)�m(x))2
�

. (36.6)

In this example, ✓ is a function. 2

Notation. Recall that the Kullback-Leibler distance between two distributions P
0

and P
1

with densities p
0

and p
1

is defined to be

KL(P
0

, P
1

) =

Z

log

✓

dP
0

dP
1

◆

dP
0

Z

log

✓

p
0

(x)

p
1

(x)

◆

p
0

(x)dx.

The appendix defines several other distances between probability distributions and explains
how these distances are related. We write a ^ b = min{a, b} and a _ b = max{a, b}. If
P is a distribution with density p, the product distribution for n iid observations is Pn with
density pn(x) =

Qn
i=1

p(xi). It is easy to check that KL(Pn
0

, Pn
1

) = nKL(P
0

, P
1

). For
positive sequences an and bn we write an = X (bn) to mean that there exists C > 0 such
that an � Cbn for all large n. an ⇣ bn if an/bn is strictly bounded away from zero and
infinity for all large n; that is, an = O(bn) and bn = O(an).

36.3 Bounding the Minimax Risk

The way we find Rn is to find an upper bound and a lower bound. To find an upper bound,
let b✓ be any estimator. Then

Rn = inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))]  sup

P2P
EP [d(b✓, ✓(P ))] ⌘ Un. (36.7)

So the maximum risk of any estimator provides an upper bound Un. Finding a lower bound
Ln is harder. We will consider two methods: the Le Cam method and the Fano method. If
the lower and upper bound are close, then we have succeeded. For example, if Ln = cn�↵

and Un = Cn�↵ for some positive constants c, C and ↵, then we have established that the
minimax rate of convergence is n�↵.
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36.4 Lower Bound Method 1: Le Cam

36.8 Theorem. Let P be a set of distributions. For any pair P
0

, P
1

2 P ,

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

4

Z

[pn
0

(x) ^ pn
1

(x)]dx � �

8

e�nKL(P0,P1) (36.9)

where � = d(✓(P
0

), ✓(P
1

)).

Remark: The second inequality is useful, if KL(P
0

, P
1

) = 1, since it is usually difficult
to compute

R

[pn
0

(x) ^ pn
1

(x)]dx directly. An alternative is
Z

[pn
0

(x) ^ pn
1

(x)]dx � 1

2

✓

1� 1

2

Z

|p
0

� p
1

|
◆

2n

. (36.10)

36.11 Corollary. Suppose there exist P
0

, P
1

2 P such that KL(P
0

, P
1

)  log 2/n. Then

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

16

(36.12)

where � = d(✓(P
0

), ✓(P
1

)).

Proof. Let ✓
0

= ✓(P
0

), ✓
1

= ✓(P
1

) and � = d(✓
0

, ✓
1

). First suppose that n = 1 so that we
have a single observation X . An estimator b✓ defines a test statistic  , namely,

 (X) =

(

1 if d(b✓, ✓
1

)  d(b✓, ✓
0

)

0 if d(b✓, ✓
1

) > d(b✓, ✓
0

).

If P = P
0

and  = 1 then

� = d(✓
0

, ✓
1

)  d(✓
0

, b✓) + d(✓
1

, b✓)  d(✓
0

, b✓) + d(✓
0

, b✓) = 2d(✓
0

, b✓)

and so d(✓
0

, b✓) � �

2

. Hence

EP0 [d(b✓, ✓0)] � EP0 [d(b✓, ✓0)I( = 1)] � �

2

EP0 [I( = 1)] =

�

2

P
0

( = 1). (36.13)

Similarly,

EP1 [d(b✓, ✓1)] �
�

2

P
1

( = 0). (36.14)

Taking the maximum of (36.13) and (36.14), we have

sup

P2P
EP [d(b✓, ✓(P ))] � max

P2{P0,P1}
EP [d(b✓, ✓(P ))] � �

2

max

n

P
0

( = 1), P
1

( = 0)

o

.
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Taking the infimum over all estimators, we have

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

2

⇡

where
⇡ = inf

 
max

j=0,1
Pj( 6= j). (36.15)

Since a maximum is larger than an average,

⇡ = inf

 
max

j=0,1
Pj( 6= j) � inf

 

P
0

( 6= 0) + P
1

( 6= 1)

2

.

The sum of the errors P
0

( 6= 0) + P
1

( 6= 1) is minimized (see Lemma 36.16) by the
Neyman-Pearson test

 ⇤(x) =
⇢

0 if p
0

(x) � p
1

(x)
1 if p

0

(x) < p
1

(x).

From Lemma 36.17,

P
0

( ⇤ 6= 0) + P
1

( ⇤ 6= 1)

2

=

1

2

Z

[p
0

(x) ^ p
1

(x)]dx.

Thus we have shown that

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

4

Z

[p
0

(x) ^ p
1

(x)]dx.

Now suppose we have n observations. Then, replacing p
0

and p
1

with pn
0

(x) =
Qn

i=1

p
0

(xi)
and pn

1

(x) =
Qn

i=1

p
1

(xi), we have

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

4

Z

[pn
0

(x) ^ pn
1

(x)]dx.

In Lemma 36.18 below, we show that
R

p ^ q � 1

2

e�KL(P,Q). Since KL(Pn
0

, Pn
1

) =

nKL(P
0

, P
1

), we have

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

8

e�nKL(P0,P1).

The result follows.

36.16 Lemma. Given P
0

and P
1

, the sum of errors P
0

( = 1) + P
1

( = 0) is minimized
over all tests  by the Neyman-Pearson test

 ⇤(x) =
⇢

0 if p
0

(x) � p
1

(x)
1 if p

0

(x) < p
1

(x).
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Proof. See exercise 2.

36.17 Lemma. For the Neyman-Pearson test  ⇤,

P
0

( ⇤ 6= 0) + P
1

( ⇤ 6= 1)

2

=

1

2

Z

[p
0

(x) ^ p
1

(x)]dx

Proof. See exercise 3.

36.18 Lemma. For any P and Q,
R

p ^ q � 1

2

e�KL(P,Q).

Proof. First note that
R

max(p, q) +
R

min(p, q) = 2. Hence

2

Z

p ^ q �


2�
Z

p ^ q

�

Z

p ^ q =

Z

p ^ q

Z

p _ q

�
✓

Z

p

(p ^ q) (p _ q)

◆

2

�
✓

Z p
pq

◆

2

= exp

✓

2 log

Z p
pq

◆

= exp

✓

2 log

Z

p
p

q/p

◆

� exp

✓

2 log

Z

p log

r

q

p

◆

= e�KL(P,Q)

where we used Jensen’s inequality in the last inequality.

36.19 Example. Consider data (X
1

, Y
1

), . . . , (Xn, Yn) where Xi ⇠ Uniform(0, 1), Yi =
m(Xi) + ✏i and ✏i ⇠ N(0, 1). Assume that

m 2 M =

(

m : |m(y)�m(x)|  L|x� y|, for all x, y 2 [0, 1]

)

.

So P is the set of distributions of the form p(x, y) = p(x)p(y |x) = �(y � m(x)) where
m 2 M.

How well can we estimate m(x) at some point x? Without loss of generality, let’s take
x = 0 so the parameter of interest is ✓ = m(0). Let d(✓

0

, ✓
1

) = |✓
0

� ✓
1

|. Let m
0

(x) = 0

for all x. Let 0  ✏  1 and define

m
1

(x) =

⇢

L(✏� x) 0  x  ✏
0 x � ✏.
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Then m
0

,m
1

2 M and � = |m
1

(0)�m
0

(0)| = L✏. The KL distance is

KL(P
0

, P
1

) =

Z

1

0

Z

p
0

(x, y) log

✓

p
0

(x, y)

p
1

(x, y)

◆

dydx

=

Z

1

0

Z

p
0

(x)p
0

(y |x) log
✓

p
0

(x)p
0

(y |x)
p
1

(x)p
1

(y |x)
◆

dydx

=

Z

1

0

Z

�(y) log

✓

�(y)

�(y �m
1

(x))

◆

dydx

=

Z ✏

0

Z

�(y) log

✓

�(y)

�(y �m
1

(x))

◆

dydx

=

Z ✏

0

KL(N(0, 1), N(m
1

(x), 1))dx.

In general, KL(N(µ
1

, 1), N(µ
2

, 1)) = (µ
1

� µ
2

)

2/2. So

KL(P
0

, P
1

) =

L2

2

Z ✏

0

(✏� x)2dx =

L2✏3

6

.

Let ✏ = (6 log 2/(L2n))1/3. Then, KL(P
0

, P
1

) = log 2/n and hence, by Corollary 36.11,

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] � �

16

=

L✏

16

=

L

16

✓

6 log 2

L2n

◆

1/3

=

⇣ c

n

⌘

1/3
. (36.20)

It is easy to show that the regressogram (regression histogram) b✓ = bm(0) has risk

EP [d(b✓, ✓(P ))] 
✓

C

n

◆

1/3

.

Thus we have proved that

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] ⇣ n� 1

3 . (36.21)

The same calculations in d dimensions yield

inf

b✓
sup

P2P
EP [d(b✓, ✓(P ))] ⇣ n� 1

d+2 . (36.22)

On the squared scale we have

inf

b✓
sup

P2P
EP [d

2

(

b✓, ✓(P ))] ⇣ n� 2
d+2 . (36.23)

Similar rates hold in density estimation. 2
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36.5 Lower Bound Method II: Fano

For metrics like d(f, g) =
R

(f � g)2, Le Cam’s method will usually not give a tight bound.
Instead, we use Fano’s method. Instead of choosing two distributions P

0

, P
1

, we choose a
finite set of distributions P

1

, . . . , PN 2 P .

36.24 Theorem. Let F = {P
1

, . . . , PN} ⇢ P . Let ✓(P ) be a parameter taking values in a
metric space with metric d. Then

inf

b✓
sup

P2P
EP

⇣

d
⇣

b✓, ✓(P )

⌘⌘

� ↵

2

✓

1� n� + log 2

logN

◆

(36.25)

where
↵ = min

j 6=k
d (✓(Pj), ✓(Pk)) , (36.26)

and
� = max

j 6=k
KL(Pj , Pk). (36.27)

36.28 Corollary (Fano Minimax Bound). Suppose there exists F = {P
1

, . . . , PN} ⇢ P
such that N � 16 and

� = max

j 6=k
KL(Pj , Pk)  logN

4n
. (36.29)

Then
inf

b✓
max

P2P
EP

h

d
⇣

b✓, ✓(P )

⌘i

� ↵

4

. (36.30)

Proof. Let b✓ be any estimator and let Z = argminj2{1,...,N} d(b✓, ✓j). For any j 6= Z,
d(b✓n(X), ✓j) � ↵/2. Hence,

EP
j

⇣

d(b✓n, ✓(Pj))

⌘

�
⇣↵

2

⌘

Pj(Z 6= j)

and so

max

j
EP

j

d(b✓n, ✓(Pj)) � ↵

2

max

j
Pj(Z 6= j) � ↵

2

1

N

N
X

j=1

Pj(Z 6= j).

By Fano’s lemma (Lemma 36.83 in the appendix)

1

N

N
X

j=1

Pj(Z 6= j) �
✓

1� n� + log 2

logN

◆

.
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Thus,

inf

b✓
sup

P2P
EP

⇣

d
⇣

b✓, ✓(P )

⌘⌘

� inf

b✓
max

P2F
EP

⇣

d
⇣

b✓, ✓(P )

⌘⌘

� ↵

2

✓

1� n� + log 2

logN

◆

.

(36.31)

Hypercubes. To use Fano’s method, we need to construct a finite class of distributions F .
Sometimes we use a set of the form

F =

n

P! : ! 2 X
o

where

X =

n

! = (!
1

, . . . ,!m) : !i 2 {0, 1}, i = 1, . . . ,m

)

which is called a hypercube. There are N = 2

m distributions in F . For !, ⌫ 2 X , define
the Hamming distance H(!, ⌫) =

Pm
j=1

I(!k 6= ⌫k).
One problem with a hypercube is that some pairs P,Q 2 F might be very close together

which will make ↵ = minj 6=k d (✓(Pj), ✓(Pk)) small. This will result in a poor lower
bound. We can fix this problem by pruning the hypercube. That is, we can find a subset
X 0 ⇢ X which has nearly the same number of elements as X but such that each pair
P,Q 2 F 0

=

n

P! : ! 2 X 0
o

is far apart. We call X 0 a pruned hypercube. The technique
for constructing X 0 is the Varshamov-Gilbert lemma.

36.32 Lemma. (Varshamov-Gilbert) Let X =

n

! = (!
1

, . . . ,!N ) : !j 2 {0, 1}
o

.

Suppose that N � 8. There exists !0,!1, . . . ,!M 2 X such that (i) !0

= (0, . . . , 0),
(ii) M � 2

N/8 and (iii) H(!(j),!(k)
) � N/8 for 0  j < k  M . We call X 0

=

{!0,!1, . . . ,!M} a pruned hypercube.

Proof. Let D = bN/8c. Set !0

= (0, . . . , 0). Define X
0

= X and X
1

= {! 2 X :

H(!,!0

) > D}. Let !1 be any element in X
1

. Thus we have eliminated {! 2 X :

H(!,!0

)  D}. Continue this way recursively and at the jth step define Xj = {! 2
Xj�1

: H(!,!j�1

) > D} where j = 1, . . . ,M . Let nj be the number of elements
eliminated at step j, that is, the number of elements in Aj = {! 2 Xj : H(!,!(j)

)  D}.
It follows that

nj 
D
X

i=0

✓

N
i

◆

.

The sets A
0

, . . . , AM partition X and so n
0

+ n
1

+ · · ·+ nM = 2

N . Thus,

(M + 1)

D
X

i=0

✓

N
i

◆

� 2

N .
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Thus
M + 1 � 1

PD
i=0

2

�N

✓

N
i

◆

=

1

P
⇣

PN
i=1

Zi  bm/8c
⌘

where Z
1

, . . . , ZN are iid Bernoulli (1/2) random variables. By Hoeffding’s inequaity,

P

 

N
X

i=1

Zi  bm/8c
!

 e�9N/32 < 2

�N/4.

Therefore, M � 2

N/8 as long as N � 8. Finally, note that, by construction, H(!j ,!k
) �

D + 1 � N/8.

36.33 Example. Consider data (X
1

, Y
1

), . . . , (Xn, Yn) where Xi ⇠ Uniform(0, 1), Yi =
f(Xi) + ✏i and ✏i ⇠ N(0, 1). (The assumption that X is uniform is not crucial.) Assume
that f is in the Holder class F defined by

F =

(

f : |f (`)
(y)� f (`)

(x)|  L|x� y|��`, for all x, y 2 [0, 1]

)

where ` = b�c. P is the set of distributions of the form p(x, y) = p(x)p(y |x) = �(y �
m(x)) where f 2 F . Let X 0 be a pruned hypercube and let

F 0
=

(

f!(x) =
m
X

j=1

!j�j(x) : ! 2 X 0
)

where m = dcn 1
2�+1 e, �j(x) = Lh�K((x � Xj)/h), and h = 1/m. Here, K is any

sufficiently smooth function supported on (�1/2, 1/2). Let d2(f, g) =
R

(f � g)2. Some
calculations show that, for !, ⌫ 2 X 0,

d(f!, f⌫) =
p

H(!, ⌫)Lh�+
1
2

Z

K2 �
r

m

8

Lh�+
1
2

Z

K2 � c
1

h� .

We used the Varshamov-Gilbert result which implies that H(!, ⌫) � m/8. Furthermore,

KL(P!, P⌫)  c
2

h2� .

To apply Corollary 36.28, we need

KL(P!, P⌫)  logN

4n
=

log 2

m/8

4n
=

m

32n
=

1

32nh
.

This holds if we set h = (c/n)1/(2�+1). In that case, d(f!, f⌫) � c
1

h� = c
1

(c/n)�/(2�+1).
Corollary 36.28 implies that

inf

bf
sup

P2P
EP [d( bf, f)] = X (n� �

2�+1
).
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It follows that
inf

bf
sup

P2P
EP

Z

(f � bf)2 � n� 2�
2�+1 .

It can be shown that there are kernel estimators that achieve this rate of convergence. (The
kernel has to be chosen carefully to take advantage of the degree of smoothness �.) A
similar calculation in d dimensions shows that

inf

bf
sup

P2P
EP

Z

(f � bf)2 � n� 2�
2�+d .

2

36.6 Further Examples

36.6.1 Parametric Maximum Likelihood

For parametric models that satisfy weak regularity conditions, the maximum likelihood
estimator is approximately minimax. Consider squared error loss which is squared bias
plus variance. In parametric models with large samples, it can be shown that the variance
term dominates the bias so the risk of the mle b✓ roughly equals the variance:35

R(✓, b✓) = Var✓(
b✓) + bias

2 ⇡ Var✓(
b✓). (36.34)

The variance of the mle is approximately Var(

b✓) ⇡ 1

nI(✓) where I(✓) is the Fisher informa-
tion. Hence,

nR(✓, b✓) ⇡ 1

I(✓)
. (36.35)

For any other estimator ✓0, it can be shown that for large n, R(✓, ✓0) � R(✓, b✓).
Here is a more precise statement, due to Hájek and Le Cam. The family of distributions

(P✓ : ✓ 2 ⇥) with densities (P✓ : ✓ 2 ⇥) is differentiable in quadratic mean if there exists
`0✓ such that

Z

 

p
p✓+h �p

p✓ � 1

2

hT `0✓
p
p✓

!

2

dµ = o(khk2). (36.36)

36.37 Theorem (Hájek and Le Cam). Suppose that (P✓ : ✓ 2 ⇥) is differentiable in
quadratic mean where ⇥ ⇢ Rk and that the Fisher information I✓ is nonsingular. Let  
be differentiable. Then  (b✓n), where b✓n is the mle, is asymptotically, locally, uniformly
minimax in the sense that, for any estimator Tn, and any bowl-shaped `,

sup

I2I
lim inf

n!1 sup

h2I
E✓+h/

p
n`

✓p
n

✓

Tn �  

✓

✓ +
hp
n

◆◆◆

� E(`(U)) (36.38)

where I is the class of all finite subsets of Rk and U ⇠ N(0, 0
✓I

�1

✓ ( 0
✓)

T
).

35Typically, the squared bias is order O(n�2) while the variance is of order O(n�1).
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For a proof, see van der Vaart (1998). Note that the right hand side of the displayed
formula is the risk of the mle. In summary: in well-behaved parametric models, with large
samples, the mle is approximately minimax. There is a crucial caveat: these results break
down when the number of parameters is large.

36.6.2 Estimating a Smooth Density

Here we use the general strategy to derive the minimax rate of convergence for estimating
a smooth density. (See Yu (2008) for more details.)

Let F be all probability densities f on [0, 1] such that

0 < c
0

 f(x)  c
1

< 1, |f 00
(x)|  c

2

< 1.

We observe X
1

, . . . , Xn ⇠ P where P has density f 2 F . We will use the squared
Hellinger distance d2(f, g) =

R

1

0

(

p

f(x)�pg(x))2dx as a loss function.

Upper Bound. Let bfn be the kernel estimator with bandwidth h = n�1/5. Then, using
bias-variance calculations, we have that

sup

f2F
Ef

 

Z

(

bf(x)� f(x))2dx

!

 Cn�4/5

for some C. But

Z

(

p

f(x)�
p

g(x))2dx =

Z

 

f(x)� g(x)
p

f(x) +
p

g(x)

!

2

dx  C 0
Z

(f(x)� g(x))2dx

(36.39)

for some C 0. Hence supf Ef (d2(f, bfn))  Cn�4/5 which gives us an upper bound.
Lower Bound. For the lower bound we use Fano’s inequality. Let g be a bounded,

twice differentiable function on [�1/2, 1/2] such that

Z

1/2

�1/2
g(x)dx = 0,

Z

1/2

�1/2
g2(x)dx = a > 0,

Z

1/2

�1/2
(g0(x))2dx = b > 0.

Fix an integer m and for j = 1, . . . ,m define xj = (j � (1/2))/m and

gj(x) =
c

m2

g(m(x� xj))

for x 2 [0, 1] where c is a small positive constant. Let M denote the Varshamov-Gilbert
pruned version of the set

(

f⌧ = 1 +

m
X

j=1

⌧jgj(x) : ⌧ = (⌧
1

, . . . , ⌧m) 2 {�1,+1}m
)

.
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For f⌧ 2 M, let fn
⌧ denote the product density for n observations and let Mn =

n

fn
⌧ :

f⌧ 2 M
o

. Some calculations show that, for all ⌧, ⌧ 0,

KL(fn
⌧ , f

n
⌧ 0) = nKL(f⌧ , f⌧ 0)  C

1

n

m4

⌘ �. (36.40)

By Lemma 36.32, we can choose a subset F of M with N = ec0m elements (where c
0

is a
constant) and such that

d2(f⌧ , f⌧ 0) � C
2

m4

⌘ ↵ (36.41)

for all pairs in F . Choosing m = cn1/5 gives �  logN/4 and d2(f⌧ , f⌧ 0) � C2

n4/5 . Fano’s
lemma implies that

max

j
Ejd

2

(

bf, fj) � C

n4/5
.

Hence the minimax rate is n�4/5 which is achieved by the kernel estimator. Thus we have
shown that Rn(P) ⇣ n�4/5.

This result can be generalized to higher dimensions and to more general measures of
smoothness. Since the proof is similar to the one dimensional case, we state the result
without proof.

36.42 Theorem. Let Z be a compact subset of Rd. Let F(p, C) denote all probability
density functions on Z such that

Z

X

�

�

�

�

@p

@zp1
1

· · · @zpdd
f(z)

�

�

�

�

2

dz  C

where the sum is over al p
1

, . . . , pd such that
P

j pj = p. Then there exists a constant
D > 0 such that

inf

bf
sup

f2F(p,C)

Ef

Z

(

bfn(z)� f(z))2dz � D

✓

1

n

◆

2p
2p+1

. (36.43)

The kernel estimator (with an appropriate kernel) with bandwidth hn = n�1/(2p+d) achieves
this rate of convergence.

36.6.3 Minimax Classification

Let us now turn to classification. We focus on some results of Yang (1999), Tsybakov
(2004), Mammen and Tsybakov (1999), Audibert and Tsybakov (2005) and Tsybakov and
van de Geer (2005).

The data are Z = (X
1

, Y
1

), . . . , (Xn, Yn) where Yi 2 {0, 1}. Recall that a classifier is
a function of the form h(x) = I(x 2 G) for some set G. The classification risk is

R(G) = P(Y 6= h(X)) = P(Y 6= I(X 2 G)) = E(Y � I(X 2 G))

2. (36.44)
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The optimal classifier is h⇤(x) = I(x 2 G⇤
) where G⇤

= {x : m(x) � 1/2} and
m(x) = E(Y |X = x). We are interested in how close R(G) is to R(G⇤

). Following
Tsybakov (2004) we define

d(G,G⇤
) = R(G)�R(G⇤

) = 2

Z

G�G⇤

�

�

�

�

m(x)� 1

2

�

�

�

�

dPX(x) (36.45)

where A�B = (A
T

Bc
)

S

(AcSB) and PX is the marginal distribution of X .
There are two common types of classifiers. The first type are plug-in classifiers of the

form bh(x) = I(bm(x) � 1/2) where bm is an estimate of the regression function. The second
type are empirical risk minimizers where bh is taken to be the h that minimizes the observed
error rate n�1

Pn
i=1

(Yi 6= h(Xi)) as h varies over a set of classifiers H. Sometimes one
minimizes the error rate plus a penalty term.

According to Yang (1999), the classification problem has, under weak conditions, the
same order of difficulty (in terms of minimax rates) as estimating the regression function
m(x). Therefore the rates are given in Example 36.75. According to Tsybakov (2004)
and Mammen and Tsybakov (1999), classification is easier than regression. The apparent
discrepancy is due to differing assumptions.

To see that classification error cannot be harder than regression, note that for any bm and
corresponding bG

d(G, bG) = 2

Z

G�

bG

�

�m(x)� 1

2

�

� dPX(x) (36.46)

 2

Z

|bm(x)�m(x)|dPX(x)  2

s

Z

(bm(x)�m(x))2dPX(x) (36.47)

so the rate of convergence of d(G,G⇤
) is at least as fast as the regression function.

Instead of putting assumptions on the regression function m, Mammen and Tsybakov
(1999) put an entropy assumption on the set of decision sets G. They assume

logN(✏,G, d)  A✏�⇢ (36.48)

where N(✏,G, d) is the smallest number of balls of radius ✏ required to cover G. They show
that , if 0 < ⇢ < 1, then there are classifiers with rate

sup

P
E(d( bG,G⇤

)) = O(n�1/2
) (36.49)

independent of dimension d. Moreover, if we add the margin (or low noise) assumption

PX
�

0 <
�

�m(X)� 1

2

�

�  t
�  Ct↵ for all t > 0 (36.50)

we get
sup

P
E(d( bG,G⇤

)) = O
⇣

n�(1+↵)/(2+↵+↵⇢)
⌘

(36.51)

which can be nearly 1/n for large ↵ and small ⇢. The classifiers can be taken to be plug-in
estimators using local polynomial regression. Moreover, they show that this rate is mini-
max. We will discuss classification in the low noise setting in more detail in another chapter.
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36.6.4 Estimating a Large Covariance Matrix

Let X
1

, . . . , Xn be iid Gaussian vectors of dimension d. Let ⌃ = (�ij)
1i,jd be the d⇥ d

covariance matrix for Xi. Estimating ⌃ when d is large is very challenging. Sometimes we
can take advantage of special structure. Bickel and Levina (2008) considered the class of
covariance matrices ⌃ whose entries have polynomial decay. Specifically, ⇥ = ⇥(↵, ✏,M)

is all covariance matrices ⌃ such that 0 < ✏  �
min

(⌃)  �
max

(⌃)  1/✏ and such that

max

j

X

i

(

|�ij | : |i� j| > k

)

 Mk�↵

for all k. The loss function is kb⌃� ⌃k where k · k is the operator norm

kAk = sup

x: kxk2=1

kAxk
2

.

Bickel and Levina (2008) constructed an estimator that that converges at rate (log d/n)↵/(↵+1).
Cai, Zhang and Zhou (2009) showed that the minimax rate is

min

⇢

n�2↵/(2↵+1)

+

log d

n
,
d

n

�

so the Bickel-Levina estimator is not rate minimax. Cai, Zhang and Zhou then constructed
an estimator that is rate minimax.

36.6.5 Semisupervised Prediction

Suppose we have data (X
1

, Y
1

), . . . , (Xn, Yn) for a classification or regression problem. In
addition, suppose we have extra unlabelled data Xn+1

, . . . , XN . Methods that make use of
the unlabeled are called semisupervised methods. We discuss semisupervised methods in
another Chapter.

When do the unlabeled data help? Two minimax analyses have been carried out to
answer that question, namely, Lafferty and Wasserman (2007) and Singh, Nowak and Zhu
(2008). Here we briefly summarize the results of the latter.

Suppose we want to estimate m(x) = E(Y |X = x) where x 2 Rd and y 2 R.
Let p be the density of X . To use the unlabelled data we need to link m and p in some
way. A common assumption is the cluster assumption: m is smooth over clusters of the
marginal p(x). Suppose that p has clusters separated by a amount � and that m is ↵ smooth
over each cluster. Singh, Nowak and Zhu (2008) obtained the following upper and lower
minimax bounds as � varies in 6 zones which we label I to VI. These zones relate the size
of � and the number of unlabeled points:
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� semisupervised supervised unlabelled data help?
upper bound lower bound

I n�2↵/(2↵+d) n�2↵/(2↵+d) NO
II n�2↵/(2↵+d) n�2↵/(2↵+d) NO
III n�2↵/(2↵+d) n�1/d YES
IV n�1/d n�1/d NO
V n�2↵/(2↵+d) n�1/d YES
VI n�2↵/(2↵+d) n�1/d YES

The important message is that there are precise conditions when the unlabeled data help
and conditions when the unlabeled data do not help. These conditions arise from computing
the minimax bounds.

36.6.6 Graphical Models

Elsewhere in the book, we discuss the problem of estimating graphical models. Here, we
shall briefly mention some minimax results for this problem. Let X be a random vector
from a multivariate Normal distribution P with mean vector µ and covariance matrix ⌃.
Note that X is a random vector of length d, that is, X = (X

1

, . . . , Xd)
T . The d⇥ d matrix

X = ⌃

�1 is called the precision matrix. There is one node for each component of X . The
undirected graph associated with P has no edge between Xj and Xj if and only if Xjk = 0.
The edge set is E = {(j, k) : Xjk 6= 0}. The graph is G = (V,E) where V = {1, . . . , d}
and E is the edge set. Given a random sample of vectors X1, . . . , Xn ⇠ P we want to
estimate G. (Only the edge set needs to be estimated; the nodes are known.)

Wang, Wainwright and Ramchandran (2010) found the minimax risk for estimating G
under zero-one loss. Let Gd,r(�) denote all the multivariate Normals whose graphs have
edge sets with degree at most r and such that

min

(i,j)2E
|Xjk|

pXjjXkk
� �.

The sample complexity n(d, r,�) is the smallest sample size n needed to recover the true
graph with high probability. They show that for any � 2 [0, 1/2],

n(d, r,�) > max

8

<

:

log

�d�r
2

�� 1

4�2
,

log

�d
r

�� 1

1

2

⇣

log

⇣

1 +

r�
1��
⌘

� r�
1+(r�1)�

⌘

9

=

;

. (36.52)

Thus, assuming � ⇡ 1/r, we get that n � Cr2 log(d� r).

36.6.7 Deconvolution and Measurement Error

A problem has seems to have received little attention in the machine learning literature is
deconvolution. Suppose that X

1

, . . . , Xn ⇠ P where P has density p. We have seen that
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the minimax rate for estimating p in squared error loss is n� 2�
2�+1 where � is the assumed

amount of smoothness. Suppose we cannot observe Xi directly but instead we observe Xi

with error. Thus, we observe Y
1

, . . . , Yn where

Yi = Xi + ✏i, i = 1, . . . , n. (36.53)

The minimax rates for estimating p change drastically. A good account is given in Fan
(1991). As an example, if the noise ✏i is Gaussian, then Fan shows that the minimax risk
satisfies

Rn � C

✓

1

log n

◆�

which means that the problem is essentially hopeless.
Similar results hold for nonparametric regression. In the usual nonparametric regression

problem we observe Yi = m(Xi) + ✏i and we want to estimate the function m. If we
observe X⇤

i = Xi+�i instead of Xi then again the minimax rates change drastically and are
logarithmic of the �i’s are Normal (Fan and Truong 1993). This is known as measurement
error or errors in variables.

This is an interesting example where minimax theory reveals surprising and important
insight.

36.6.8 Normal Means

Perhaps the best understood cases in minimax theory involve normal means. First suppose
that X

1

, . . . , Xn ⇠ N(✓,�2) where �2 is known. A function g is bowl-shaped if the sets
{x : g(x)  c} are convex and symmetric about the origin. We will say that a loss function
` is bowl-shaped if `(✓, b✓) = g(✓ � b✓) for some bowl-shaped function g.

36.54 Theorem. The unique36 estimator that is minimax for every bowl-shaped loss func-
tion is the sample mean Xn.

For a proof, see Wolfowitz (1950).
Now consider estimating several normal means. Let Xj = ✓j+✏j/

p
n for j = 1, . . . , n

and suppose we and to estimate ✓ = (✓
1

, . . . , ✓n) with loss function `(b✓, ✓) =
Pn

j=1

(

b✓j �
✓j)2. Here, ✏

1

, . . . , ✏n ⇠ N(0,�2). This is called the normal means problem.
There are strong connections between the normal means problem and nonparametric

learning. For example, suppose we want to estimate a regression function f(x) and we
observe data Zi = f(i/n) + �i where �i ⇠ N(0,�2). Expand f in an othonormal basis:
f(x) =

P

j ✓j j(x). An estimate of ✓j is Xj =

1

n

Pn
i=1

Zi  j(i/n). It follows that
Xj ⇡ N(✓j ,�2/n). This connection can be made very rigorous; see Brown and Low
(1996).

36Up to sets of measure 0.
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The minimax risk depends on the assumptions about ✓.

36.55 Theorem (Pinsker).

1. If ⇥n = Rn then Rn = �2 and b✓ = X = (X
1

, . . . , Xn) is minimax.

2. If ⇥n = {✓ : Pn
j ✓

2

j  C2} then

lim inf

n!1 inf

b✓
sup

✓2⇥
n

R(

b✓, ✓) =
�2C2

�2 + C2

. (36.56)

Define the James-Stein estimator

b✓
JS

=

 

1� (n� 2)�2

1

n

Pn
j=1

X2

j

!

X. (36.57)

Then

lim

n!1 sup

✓2⇥
n

R(

b✓
JS

, ✓) =
�2C2

�2 + C2

. (36.58)

Hence, b✓
JS

is asymptotically minimax.

3. Let Xj = ✓j + ✏j for j = 1, 2, . . . , where ✏j ⇠ N(0,�2/n).

⇥ =

(

✓ :
1
X

j=1

✓2ja
2

j  C2

)

(36.59)

where a2j = (⇡j)2p. Let Rn denote the minimax risk. Then

min

n!1n
2p

2p+1Rn =

⇣�

⇡

⌘

2p
2p+1

C
2

2p+1

✓

p

p+ 1

◆

2p
2p+1

(2p+ 1)

1
2p+1 . (36.60)

Hence, Rn ⇣ n� 2p
2p+1 . An asymptotically minimax estimator is the Pinsker estimator

defined by b✓ = (w
1

X
1

, w
2

X
2

, . . . , ) where wj = [1� (aj/µ)]+ and µ is determined
by the equation

�2

n

X

j

aj(µ� aj)+ = C2.

The set ⇥ in (36.59) is called a Sobolev ellipsoid. This set corresponds to smooth func-
tions in the function estimation problem. The Pinsker estimator corresponds to estimating
a function by smoothing. The main message to take away from all of this is that minimax
estimation under smoothness assumptions requires shrinking the data appropriately.
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36.7 Adaptation

The results in this chapter provide minimax rates of convergence and estimators that achieve
these rates. However, the estimators depend on the assumed parameter space. For example,
estimating a �-times differential regression function requires using an estimator tailored
to the assumed amount of smoothness to achieve the minimax rate n� 2�

2�+1 . There are
estimators that are adaptive, meaning that they achieve the minimax rate without the user
having to know the amount of smoothness. See, for example, Chapter 9 of Wasserman
(2006) and the references therein.

36.8 The Bayesian Connection

Another way to find the minimax risk and to find a minimax estimator is to use a carefully
constructed Bayes estimator. In this section we assume we have a parametric family of
densities {p(x; ✓) : ✓ 2 ⇥} and that our goal is to estimate the parameter ✓. Since the
distributions are indexed by ✓, we can write the risk as R(✓, b✓n) and the maximum risk as
sup✓2⇥R(✓, b✓n).

Let Q be a prior distribution for ✓. The Bayes risk (with respect to Q) is defined to be

BQ(
b✓n) =

Z

R(✓, b✓n)dQ(✓) (36.61)

and the Bayes estimator with respect to Q is the estimator ✓n that minimizes BQ(
b✓n). For

simplicity, assume that Q has a density q. The posterior density is then

q(✓ |Xn
) =

p(X
1

. . . , Xn; ✓)q(✓)

m(X
1

, . . . , Xn)

where m(x
1

, . . . , xn) =
R

p(x
1

, . . . , xn; ✓)q(✓)d✓.

36.62 Lemma. The Bayes risk can be written as

Z

 

Z

L(✓, b✓n)q(✓ |x1, . . . , xn)d✓
!

m(x
1

, . . . , xn)dx1 · · · dxn.

Proof. See exercise 15.

It follows from this lemma that the Bayes estimator can be obtained by finding b✓n =

b✓n(x1 . . . , xn) to minimize the inner integral
R

L(✓, b✓n)q(✓ |x1, . . . , xn)d✓. Often, this is
an easy calculation.

36.63 Example. Suppose that L(✓, b✓n) = (✓ � b✓n)2. Then the Bayes estimator is the
posterior mean ✓Q =

R

✓ q(✓ |x
1

, . . . , xn)d✓. 2
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Now we link Bayes estimators to minimax estimators.

36.64 Theorem. Let b✓n be an estimator. Suppose that (i) the risk function R(✓, b✓n) is
constant as a function of ✓ and (ii) b✓n is the Bayes estimator for some prior Q. Then b✓n is
minimax.

Proof. We will prove this by contradiction. Suppose that b✓n is not minimax. Then there is
some other estimator ✓0 such that

sup

✓2⇥
R(✓, ✓0) < sup

✓2⇥
R(✓, b✓n). (36.65)

Now,

BQ(✓
0
) =

Z

R(✓, ✓0)dQ(✓) definition of Bayes risk

 sup

✓2⇥
R(✓, ✓0) average is less than sup

< sup

✓2⇥
R(✓, b✓n) from (36.65)

=

Z

R(✓, b✓n)dQ(✓) since risk is constant

= BQ(
b✓n) definition of Bayes risk.

So BQ(✓0) < BQ(
b✓n). This is a contradiction because b✓n is the Bayes estimator for Q so it

must minimize BQ.

36.66 Example. Let X ⇠ Binomial(n, ✓). The mle is X/n. Let L(✓, b✓n) = (✓ � b✓n)2.
Define

b✓n =

X
n +

q

1

4n

1 +

q

1

n

.

Some calculations show that this is the posterior mean under a Beta(↵,�) prior with ↵ =

� =

p

n/4. By computing the bias and variance of b✓n it can be seen that R(✓, b✓n) is
constant. Since b✓n is Bayes and has constant risk, it is minimax. 2

36.67 Example. Let us now show that the sample mean is minimax for the Normal model.
Let X ⇠ Np(✓, I) be multivariate Normal with mean vector ✓ = (✓

1

, . . . , ✓p). We will
prove that b✓n = X is minimax when L(✓, b✓n) = kb✓n � ✓k2. Assign the prior Q =

N(0, c2I). Then the posterior is

N

✓

c2x

1 + c2
,

c2

1 + c2
I

◆

. (36.68)
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The Bayes risk BQ(
b✓n) =

R

R(✓, b✓n)dQ(✓) is minimized by the posterior mean e✓ =

c2X/(1 + c2). Direct computation shows that BQ(
e✓) = pc2/(1 + c2). Hence, if ✓⇤ is

any estimator, then

pc2

1 + c2
= BQ(

e✓)  BQ(✓
⇤
) =

Z

R(✓⇤, ✓)dQ(✓)  sup

✓
R(✓⇤, ✓).

This shows that R(⇥) � pc2/(1 + c2) for every c > 0 and hence

R(⇥) � p. (36.69)

But the risk of b✓n = X is p. So, b✓n = X is minimax. 2

36.9 Nonparametric Maximum Likelihood and the Le Cam
Equation

In some cases, the minimax rate can be found by finding ✏ to solve the equation H(✏) = n✏2

where H(✏) = logN(✏) and N(✏) is the smallest number of balls of size ✏ in the Hellinger
metric needed to cover P . H(✏) is called the Hellinger entropy of P . The equation H(✏) =
n✏2 is known as the Le Cam equation. In this section we consider one case where this is
true. For more general versions of this argument, see Shen and Wong (1995), Barron and
Yang (1999) and Birgé and Massart (1993).

Our goal is to estimate the density function using maximum likelihood. The loss func-
tion is Hellinger distance. Let P be a set of probability density functions. We have in mind
the nonparametric situation where P does not correspond to some finite dimensional para-
metric family. Let N(✏) denote the Hellinger covering number of P . We will make the
following assumptions:

(A1) We assume that there exist 0 < c
1

< c
2

< 1 such that c
1

 p(x)  c
2

for all x and
all p 2 P .

(A2) We assume that there exists a > 0 such that

H(a✏,P, h)  sup

p2P
H(✏, B(p, 4✏), h)

where B(p, �) = {q : h(p, q)  �}.

(A3) We assume
p
n✏n ! 1 as n ! 1 where H(✏n) ⇣ n✏2n.

Assumption (A1) is a very strong and is made only to make the proofs simpler. As-
sumption (A2) says that the local entropy and global entropy are of the same order. This is
typically true in nonparametric models. Assumption (A3) says that the rate of convergence



36.9. Nonparametric Maximum Likelihood and the Le Cam Equation 865

is slower than O(1/
p
n) which again is typical of nonparametric problems. An example of

a class P that satisfies these conditions is

P =

(

p : [0, 1] ! [c
1

, c
2

] :

Z

1

0

p(x)dx = 1,

Z

1

0

(p00(x))2dx  C2

)

.

Thanks to (A1) we have,

KL(p, q)  �2

(p, q) =

Z

(p� q)2

p
 1

c
1

Z

(p� q)2

=

1

c
1

Z

(

p
p�p

q)2(
p
p+

p
q)2

 4c
2

c
1

Z

(

p
p�p

q)2 = Ch2(p, q) (36.70)

where C = 4c
2

/c
1

.
Let ✏n solve the Le Cam equation. More precisely, let

✏n = min

(

✏ : H

✓

✏p
2C

◆

 n✏2

16C

)

. (36.71)

We will show that ✏n is the minimax rate.

Upper Bound. To show the upper bound, we will find an estimator that achieves the rate.
Let Pn = {p

1

, . . . , pN} be an ✏n/
p
2C covering set where N = N(✏n/

p
2C). The set Pn

is an approximation to P that grows with sample size n. Such a set is called sieve. Let bp be
the mle over Pn, that is, bp = argmaxp2P

n

L(p) where L(p) =Qn
i=1

p(Xi) is the likelihood
function. We call bp, a sieve maximum likelihood estimator. It is crucial that the estimator
is computed over Pn rather than over P to prevent overfitting. Using a sieve is a type of
regularization. We need the following lemma.

36.72 Lemma (Wong and Shen). Let p
0

and p be two densities and let � = h(p
0

, p). Let
Z
1

, . . . , Zn be a sample from p
0

. Then

P
✓ L(p)
L(p

0

)

> e�n�2/2

◆

 e�n�2/4.
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Proof.

P
✓ L(p)
L(p

0

)

> e�n�2/2

◆

= P

 

n
Y

i=1

s

p(Zi)

p
0

(Zi)
> e�n�2/4

!

 en�
2/4E

 

n
Y

i=1

s

p(Zi)

p
0

(Zi)

!

= en�
2/4

 

E

 

s

p(Zi)

p
0

(Zi)

!!n

= en�
2/4

✓

Z p
p
0

p

◆n

= en�
2/4

✓

1� h2(p
0

, p)

2

◆n

= en�
2/4

exp

✓

n log

✓

1� h2(p
0

, p)

2

◆◆

 en�
2/4e�nh2

(p0,p)/2
= e�n�2/4.

In what follows, we use c, c
1

, c
2

, . . . , to denote various positive constants.

36.73 Theorem. supP2P Ep(h(p, bp)) = O(✏n).

Proof. Let p
0

denote the true density. Let p⇤ be the element of Pn that minimizes KL(p
0

, pj).
Hence, KL(p

0

, p⇤)  Cd2(p
0

, p⇤)  C(✏2n/(2C)) = ✏2n/2. Let

B = {p 2 Pn : d(p⇤, p) > A✏n}

where A = 1/
p
2C. Then

P(h(bp, p
0

) > D✏n)  P(h(bp, p⇤) + h(p
0

, p⇤) > D✏n)  P(h(bp, p⇤) +
✏p
2C

> D✏n)

= P(h(bp, p⇤) > A✏n) = P(bp 2 B)  P

 

sup

p2B
L(p)
L(p⇤) > 1

!

 P

 

sup

p2B
L(p)
L(p⇤) > e�n✏2

n

(A2/2+1)

!

 P

 

sup

p2B
L(p)
L(p⇤) > e�n✏2

n

A2/2

!

+ P

 

sup

p2B
L(p

0

)

L(p⇤) > en✏
2
n

!

⌘ P
1

+ P
2

.

Now

P
1


X

p2B
P
✓ L(p)
L(p⇤) > e�n✏2

n

A2/2

◆

 N(✏/
p
2C)e�n✏2

n

A2/4  en✏
2
n

/(16C)

where we used Lemma 36.72 and the definition of ✏n. To bound P
2

, define Kn =

1

n

Pn
i=1

log

p0(Z
i

)

p⇤(Z
i

)

.
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Hence, E(Kn) = KL(p
0

, p⇤)  ✏2/2. Also,

�2 ⌘ Var

✓

log

p
0

(Z)

p⇤(Z)

◆

 E
✓

log

p
0

(Z)

p⇤(Z)

◆

2

 log

✓

c
2

c
1

◆

E
✓

log

p
0

(Z)

p⇤(Z)

◆

= log

✓

c
2

c
1

◆

KL(p
0

, p⇤)  log

✓

c
2

c
1

◆

✏2

2

⌘ c
3

✏2n

where we used (36.70). So, by Bernstein’s inequality,

P
2

= P(Kn > ✏2n) = P(Kn � KL(p
0

, p⇤) > ✏2n � KL(p
0

, p⇤))

 P
✓

Kn � KL(p
0

, p⇤) >
✏2n
2

◆

 2 exp

✓

� n✏4n
8�2 + c

4

✏2n

◆

 2 exp

��c
5

n✏2n
�

.

Thus, P
1

+ P
2

 exp

��c
6

n✏2n
�

. Now,

E(h(bp, p
0

)) =

Z

p
2

0

P(h(bp, p
0

) > t)dt

=

Z D✏
n

0

P(h(bp, p
0

) > t)dt+

Z

p
2

D✏
n

P(h(bp, p
0

) > t)dt

 D✏n + exp

��c
6

n✏2n
�  c

7

✏n.

Lower Bound. Now we derive the lower bound.

36.74 Theorem. Let ✏n be the smallest ✏ such that H(a✏) � 64C2n✏2. Then

inf

bp
sup

P2P
Ep(h(p, bp)) = X (✏n).

Proof. Pick any p 2 P . Let B = {q : h(p, q)  4✏n}. Let F = {p
1

, . . . , pN} be an ✏n
packing set for B. Then

N = logP (✏n, B, h) � logH(✏n, B, h) � logH(a✏n) � 64C2n✏2.

Hence, for any Pj , Pk 2 F ,

KL(Pn
j , P

n
k ) = nKL(Pj , Pk)  Cnh2(Pj , Pk)  16Cn✏2n  N

4

.

It follows from Fano’s inequality that

inf

bp
sup

p2P
Eph(p, bp) � 1

4

min

j 6=k
h(pj , pk) � ✏n

4
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as claimed.

In summary, we get the minimax rate by solving

H(✏n) ⇣ n✏2n.

Now we can use the Le Cam equation to compute some rates:

36.75 Example. Here are some standard examples:

Space Entropy Rate
Sobolev ↵ ✏�1/↵ n�↵/(2↵+1)

Sobolev ↵ dimension d ✏�d/↵ n�↵/(2↵+d)

Lipschitz ↵ ✏�d/↵ n�↵/(2↵+d)

Monotone 1/✏ n�1/3

Besov B↵
p,q ✏�d/↵ n�↵/(2↵+d)

Neural Nets see below see below
m-dimensional m log(1/✏) (m/n)

parametric model

In the neural net case we have f(x) = c
0

+

P

i ci�(v
T
i x+bi) where kck

1

 C, kvik = 1

and � is a step function or a Lipschitz sigmoidal function. Then
✓

1

✏

◆

1/2+1/d

 H(✏) 
✓

1

✏

◆

1/2+1/(2d)

log(1/✏) (36.76)

and hence

n�(1+2/d)/(2+1/d)
(log n)�(1+2/d)(1+1/d)/(2+1/d)  ✏n  (n/ log n)�(1+1/d)/(2+1/d).

(36.77)

2

36.10 Summary

Minimax theory allows us to state precisely the best possible performance of any procedure
under given conditions. The key tool for finding lower bounds on the minimax risk is
Fano’s inequality. Finding an upper bound usually involves finding a specific estimator and
computing its risk.

36.11 Bibliographic remarks

There is a vast literature on minimax theory however much of it is scattered in various
journal articles. Some texts that contain minimax theory include Tsybakov (2009), van de
Geer (2000), van der Vaart (1998) and Wasserman (2006).
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36.12 Appendix

36.12.1 Metrics For Probability Distributions

Minimax theory often makes use of various metrics for probability distributions. Here we
summarize some of these metrics and their properties.

Let P and Q be two distributions with densities p and q. We write the distance between
P and Q as either d(P,Q) or d(p, q) whichever is convenient. We define the following
distances and related quantities.

Total variation TV(P,Q) = supA |P (A)�Q(A)|
L
1

distance d
1

(P,Q) =

R |p� q|
L
2

distance d
2

(P,Q) =

q

R |p� q|2
Hellinger distance h(P,Q) =

q

R

(

p
p�p

q)2

Kullback-Leibler distance KL(P,Q) =

R

p log(p/q)
�2 �2

(P,Q) =

R

(p� q)2/p
Affinity kP ^Qk =

R

p ^ q =

R

min{p(x), q(x)}dx
Hellinger affinity A(P,Q) =

R p
pq

There are many relationships between these quantities. These are summarized in the
next two theorems. We leave the proofs as exercises.

36.78 Theorem. The following relationships hold:

1. TV(P,Q) =

1

2

d
1

(P,Q) = 1� kp ^ qk. (Scheffés Theorem.)
2. TV(P,Q) = P (A)�Q(A) where A = {x : p(x) > q(x)}.
3. 0  h(P,Q)  p

2.
4. h2(P,Q) = 2(1�A(P,Q)).
5. kP ^Qk = 1� 1

2

d
1

(P,Q).

6. kP ^Qk � 1

2

A2

(P,Q) =

1

2

⇣

1� h2
(P,Q)

2

⌘

2

. (Le Cam’s inequalities.)

7. 1

2

h2(P,Q)  TV(P,Q) =

1

2

d
1

(P,Q)  h(P,Q)

q

1� h2
(P,Q)

4

.

8. TV(P,Q) pKL(P,Q)/2. (Pinsker’s inequality.)
9. kP ^Qk � 1

2

e�KL(P,Q).
10. TV(P,Q)  h(P,Q) pKL(P,Q) p�2

(P,Q).

Let Pn denote the product measure based on n independent samples from P .

36.79 Theorem. The following relationships hold:

1. h2(Pn, Qn
) = 2

⇣

1�
⇣

1� h2
(P,Q)

2

⌘n⌘

.
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2. kPn ^Qnk � 1

2

A2

(Pn, Qn
) =

1

2

�

1� 1

2

h2(P,Q)

�

2n.
3. kPn ^Qnk � �1� 1

2

d
1

(P,Q)

�n.
4. KL(Pn, Qn

) = nKL(P,Q).

36.12.2 Fano’s Lemma

For 0 < p < 1 define the entropy h(p) = �p log p� (1� p) log(1� p) and note that 0 
h(p)  log 2. Let (Y, Z) be a pair of random variables each taking values in {1, . . . , N}
with joint distribution PY,Z . Then the mutual information is defined to be

I(Y ;Z) = KL(PY,Z , PY ⇥ PZ) = H(Y )�H(Y |Z) (36.80)

where H(Y ) = �Pj P(Y = j) logP(Y = j) is the entropy of Y and H(Y |Z) is the
entropy of Y given Z. We will use the fact that I(Y ;h(Z))  I(Y ;Z) for an function h.

36.81 Lemma. Let Y be a random variable taking values in {1, . . . , N}. Let {P
1

, . . . , PN}
be a set of distributions. Let X be drawn from Pj for some j 2 {1, . . . , N}. Thus P (X 2
A |Y = j) = Pj(A). Let Z = g(X) be an estimate of Y taking values in {1, . . . , N}.
Then,

H(Y |X)  P(Z 6= Y ) log(N � 1) + h(P(Z = Y )). (36.82)

We follow the proof from Cover and Thomas (1991).

Proof. Let E = I(Z 6= Y ). Then

H(E, Y |X) = H(Y |X) +H(E |X,Y ) = H(Y |X)

since H(E |X,Y ) = 0. Also,

H(E, Y |X) = H(E |X) +H(Y |E,X).

But H(E |X)  H(E) = h(P (Z = Y )). Also,

H(Y |E,X) = P (E = 0)H(Y |X,E = 0) + P (E = 1)H(Y |X,E = 1)

 P (E = 0)⇥ 0 + h(P (Z = Y )) log(N � 1)

since Y = g(X) when E = 0 and, when E = 1, H(Y |X,E = 1) by the log number
of remaining outcomes. Combining these gives H(Y |X)  P(Z 6= Y ) log(N � 1) +

h(P(Z = Y )).
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36.83 Lemma. (Fano’s Inequality) Let P = {P
1

, . . . , PN} and � = maxj 6=k KL(Pj , Pk).
For any random variable Z taking values on {1, . . . , N},

1

N

N
X

j=1

Pj(Z 6= j) �
✓

1� n� + log 2

logN

◆

.

Proof. For simplicity, assume that n = 1. The general case follows since KL(Pn, Qn
) =

nKL(P,Q). Let Y have a uniform distribution on {1, . . . , N}. Given Y = j, let X have
distribution Pj . This defines a joint distribution P for (X,Y ) given by

P (X 2 A, Y = j) = P (X 2 A |Y = j)P (Y = j) =
1

N
Pj(A).

Hence,
1

N

N
X

j=1

P (Z 6= j |Y = j) = P (Z 6= Y ).

From (36.82),

H(Y |Z)  P (Z 6= Y ) log(N � 1) + h(P (Z = Y ))  P (Z 6= Y ) log(N � 1) + h(1/2)

= P (Z 6= Y ) log(N � 1) + log 2.

Therefore,

P (Z 6= Y ) log(N � 1) � H(Y |Z)� log 2 = H(Y )� I(Y ;Z)� log 2

= logN � I(Y ;Z)� log 2 � logN � � � log 2. (36.84)

The last inequality follows since

I(Y ;Z)  I(Y ;X) =

1

N

N
X

j=1

KL(Pj , P )  1

N2

N
X

j,k

KL(Pj , Pk)  � (36.85)

where P = N�1

PN
j=1

Pj and we used the convexity of K. Equation (36.84) shows that

P (Z 6= Y ) log(N � 1) � logN � � � log 2

and the result follows.

36.12.3 Assouad’s Lemma

Assouad’s Lemma is another way to get a lower bound using hypercubes. Let

X =

n

! = (!
1

, . . . ,!N ) : !j 2 {0, 1}
o
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be the set of binary sequences of length N . Let P = {P! : ! 2 X} be a set of 2

N

distributions indexed by the elements of X . Let h(!, ⌫) =

PN
j=1

I(!j 6= ⌫j) be the
Hamming distance between !, ⌫ 2 X .

36.86 Lemma. Let {P! : ! 2 X} be a set of distributions indexed by ! and let ✓(P ) be a
parameter. For any p > 0 and any metric d,

max

!2X
E!
⇣

dp(b✓, ✓(P!))
⌘

� N

2

p+1

0

@

min

!,⌫

h(!,⌫) 6=0

dp(✓(P!), ✓(P⌫))

h(!, ⌫)

1

A

0

@

min

!,⌫

h(!,⌫)=1

kP! ^ P⌫k
1

A .

(36.87)

For a proof, see van der Vaart (1998) or Tsybakov (2009).

Exercises

36.1 Let P = N(µ
1

,⌃
1

) and Q = N(µ
2

,⌃
2

) be two, d-dimensional multivariate Gaus-
sian distributions. Find KL(P,Q).

36.2 Prove Lemma 36.16.

36.3 Prove Lemma 36.17.

36.4 Prove Theorem 36.78.

36.5 Prove Theorem 36.79.

36.6 Prove (36.80).

36.7 Prove that I(Y ;h(Z))  I(Y ;Z).

36.8 Prove (36.85).

36.9 Prove (36.39).

36.10 Prove Lemma ??.

36.11 Show that (36.40) holds.

36.12 Construct F so that (36.41) holds.

36.13 Verify the result in Example 36.63.

36.14 Verify the results in Example 36.66.

36.15 Prove Lemma 36.62.

36.16 Prove equation ??.

36.17 Prove equation ??.

36.18 Prove equation ??.


