
Online Learning

Once again, we follow Mohri, Rostamizadeh and Talwalkar (2012).

Online (sequential) prediction is amazing because it is completely assumption free. The basic
setup is as follows:

1. For t = 1, . . . , T :

(a) Observe xt.

(b) Predict ŷt.

(c) Observe yt.

(d) Incur loss L(ŷt, yt).

2. The cumulative loss is
∑

t L(ŷt, yt).

Usually we will assume that yt ∈ {0, 1} and that L(ŷt, yt) = I(ŷt 6= yt).

In the expert advice setting we have N algorithms (experts). The prediction from algorithm
i is yt,i. The goal in this case is to minimize the regret

R =
∑
t

L(ŷt, yt)−min
i
L(yt,i, yt).

Halving Algorithm. This is the simplest case. We have a finite set of predictors H.
We assume there is one h ∈ H that makes perfect predictions. Let M(h) be the maximum
number of mistakes that our algorithm makes (over all x1, . . . , xT ). Let M(H) = maxhM(h).
The algorithm is as follows:

1. Set H1 = H.

(a) Observe xt. Let ŷt be the majority vote of Ht.

(b) Observe yt.

(c) If ŷt 6= yt set Ht = {h : h(xt) = yt}.

Theorem 1 M(H) ≤ log2 |H|.

Proof. If ŷt 6= yt then we reduce Ht by at least half so that |Ht+1| ≤ (1/2)|Ht|. So after
log2 |H| mistakes there is only one expert left which must be the perfect expert and hence
there will be no more mistakes. �
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The assumption of a perfect predictor is unrealistic so let’s move on to a more realistic
setting.

Weighted Majority. The algorithm is:

1. Set β ∈ [0, 1).

2. Set w1,i = 1 for i = 1, . . . , N .

3. For t = 1, . . . , T :

(a) Observe xt.

(b) If ∑
yt,i=1

wt,i ≥
∑
yt,i=0

wt,i

then ŷt = 1 else ŷt = 0.

(c) Observe yt.

(d) If ŷt 6= yt:

If yt,i 6= yt set wt+1,i = βwt,i

If yt,i = yt set wt+1,i = wt,i.

Let m∗ = mini
∑

t I(yt,i 6= yt) be the loss of the best expert. Let m be the loss of the
algorithm.

Theorem 2 We have that

m ≤ logN +m∗ log(1/β)

log(2/(1 + β))
.

Proof. Let Wt =
∑

iwt,i. Note that W1 = N . Because of the weighted majority rule, we
have that if there is an error,

Wt+1 ≤
(

1

2
+
β

2

)
Wt =

(
1 + β

2

)
Wt.

Hence,

WT ≤
(

1 + β

2

)m
N.

On the other hand, for each i,
WT ≥ wT,i = βm(T,i)
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where m(T, i) is the number of mistakes from expert i. In particular, this holds for the best
expert so that

WT ≥ βm
∗
.

Combining these two bounds,

βm
∗ ≤ WT ≤

(
1 + β

2

)m
N.

Taking the log and re-arranging terms gives the result. �

This is a nice result but it does not guarantee that the loss is small. To see this, supposee
there are two experts. The first outputs 0, 0, . . . , 0 and the second outputs, 1, 1, . . . , 1. Note
that m∗ ≤ T/2. Now suppose that nature is evil and sets yt = 0 when ŷt = 1 and sets yt = 1
when ŷt = 0. Then m = T . So the regret is R = m −m∗ ≥ T/2. Can we make the regret
smaller. Yes, as we now show.

Randomized Weighted Majority. For this algorithm we choose expert i with some
probability pt,i. We receive a vector of losses `t = (`t,1, . . . , `t,N). The expected loss is Lt =∑

i pt,i`t,i and the cumulative expected loss is LT =
∑T

t=1 Lt. We also define LT,i =
∑

t `t,i
and the minimum loss L∗ = mini LT,i. Here is the algorithm:

1. Set wi,1 = 1 for i = 1, . . . , N .

2. Set p1,i = 1/N for i = 1, . . . , N .

3. For t = 1, . . . , T :

(a) If `t,i = 1 set wt+1,i = βwt,i. If `t,i = 0 set wt+1,i = wt,i.

(b) Let Wt+1

∑
iwt+1,i.

(c) Set pt+1,i = wt+1,i/Wt+1.

Theorem 3 We have
LT ≤ L∗ + 2

√
T logN.

The remarkable thing about this result is that the regret only grows at rate
√
T . In other

words, the average regrest is
√

logN/T .

Proof. Set pt,i = wt,i/Wt we have that wt,i = Wtpt,i. Hence,

Wt+1 =
∑

i: `t,i=0

wt,i + β
∑

i: `t,i=1

wt,i = Wt + (β − 1)
∑

i: `t,i=1

wt,i

= Wt + (β − 1)Wt

∑
i: `t,i=1

pt,i = Wt + (β − 1)WtLt = Wt[1− (1− β)Lt].
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Recalling that W1 = N we see that

WT+1 = N
∏
t

[1− (1− β)Lt].

On the other hand,
WT+1 ≥ max

i
wT+1,i = βL∗ .

Combining these inequalities we get

βL∗ ≤ WT+1 ≤ N
∏
t

[1− (1− β)Lt].

Hence,

L∗ log β ≤ logN +
∑
t

[1− (1− β)Lt]

≤ logN − (1− β)
∑
t

Lt since log(1− x) ≤ −x

= logN − (1− β)LT .

Re-arranging terms we get

LT ≤
logN

1− β
+ (1− β)T + L∗.

Now we set β = 1−
√

logN/T and we have

LT ≤ L∗ + 2
√
T logN.

�

Exponential Weights. Now we allow the loss to take values in [0, 1]. We handle this case
by modifying the weights. We assume that the loss function L is convex in its first argument.
In what follows, Lt,i is the total loss of expert i after t steps. Here is the algorithm:

1. Set w1,i = 1 for i = 1, . . . , N .

2. For t = 1, . . . , T :

(a) Observe xt.

(b) Let

ŷt =

∑
iwt,iyt,i∑
iwt,i

.

(c) Observe yt. Set
wt+1,i = wt,ie

−θL(yt,i,yt).
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Theorem 4 If θ =
√

8 logN/T then the regret satisfies

RT ≤
√
T logN/2.

Remark: The interesting thing about the proof below is that it uses probabilistic ideas even
though there is no probability distribution in the setup of the problem.

Proof. Let us begin by recalling the following fact: suppose that a ≤ X ≤ b and E[X] = 0.
Then

E[etX ] ≤ et
2(b−a)2/8. (1)

Define
Φt = log

∑
i

wt,i.

Then

Φt+1 − Φt = log

∑
iwt+1,i∑
iwt,i

= log
wt,ie

−θL(yt,i,yt)∑
iwt,i

= logEteθX

where
X = −L(yt,i, yt) ∈ [−1, 0]

and Et refers to expection with respect to the distribution with probability function pt,i =
wt,i∑
i wt,i

. So

Φt+1 − Φt = logEteθ(X−Et[X])+θEt[X]

= θEt[X] + logEteθ(X−Et[X])

≤ θEt[X] +
θ2

8
using (1)

= −θEt[L(yt,i, yt)] +
θ2

8

≤ −θL(Et[yt,i], yt) +
θ2

8
using convexity

= −θL(ŷt, yt) +
θ2

8
definition of ŷt.

Now we sum over t to get

ΦT+1 − Φ1 ≤ −θ
∑
t

L(ŷt, yt) +
θ2T

8
.

Next we have the lower bound

ΦT+1 − Φ1 = log
∑
i

wT+1,i − logN = log
∑
i

e−θLT,i − logN

≥ log max
i
e−θLT,i − logN = −θmin

i
LT,i − logN.
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Combining the lower and upper bound we have

−θmin
i
LT,i − logN ≤ θ2T

8
− θ

∑
t

L(ŷt, yt)

which implies that ∑
t

L(ŷt, yt)−min
i
LT,i ≤

logN

4
+
θT

8
.

The result follows by setting θ =
√

8 logN/T . �

Online to Batch. The setting we have focused on in class is the batch setting where we
observe random variables (X1, Y1), . . . , (Xn, Yn) from some distribution. It turns out that we
can apply online algorithms to the batch setting. We again assume that the loss L is convex
in its first argument.

Let H be a set of classifiers and assume that the loss function L is bounded by M . Suppose
we have an online algorithm. Let hi denote the classifier returned by the algorithm after
observing (Xi, Yi). As before, the regret is defined as

RT

∑
i

L(hi(Xi), Yi)−min
h∈H

T∑
i=1

L(h(Xi), Yi).

Let R(h) = E[L(h(X), Y )]. First we bound the average risk.

Theorem 5 With probability at least 1− δ,

1

T

∑
i

R(hi) ≤
1

T

∑
i

L(hi(Xi), Yi) +M

√
2 log(1/δ)

T
.

Before proceeding let us recall Azuma’s inequality. If Vi is a sequence of random variables
that satisfy

E[Vi+1|X1, . . . , Xi] = 0

and |Vi| ≤M then

P

(
1

T

∑
i

Xi > ε

)
≤ e−Tε

2/(2M2). (2)

Proof. Let Vi = R(hi)− L(hi(Xi), Yi). Then

E[Vi|X1, . . . , Xi−1] = R(hi)− E[L(hi(Xi), Yi)|hi] = R(hi)−R(hi) = 0.

Also |Vi| ≤M . Let

ε = M
√

(2/T ) log(1/δ).
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By (2),

P

(
1

T

∑
i

Xi > ε

)
≤ e−Tε

2/(2M2) = δ

and result follows from the definition of Vi. �

We define our batch classifier as

h =
1

T

T∑
i=1

hi.

Theorem 6 We have, with probability at least 1− δ that

R(h) ≤ inf
h∈H

+
RT

T
+ 2M

√
2 log(1/δ)

T
. (3)

If we use the exponentially weigthed algorithm then RT ≤
√
T logN/2. Plugging this into

(3) we have

R(h) ≤ inf
h∈H

+

√
logN

2T
+M

√
2 log(1/δ)

T
.

Proof. By convexity,

L

(
1

T

∑
i

h(Xi), Yi

)
≤ 1

T

∑
i

L(hi(Xi), Yi).

By taking the expected value and using the fact that h = 1
T

∑T
i=1 hi,

R(h) ≤ 1

T

∑
i

R(hi).

From the previous theorem, with probability at least 1− δ/2,

R(h) ≤ 1

T

∑
i

L(hi(Xi), Yi) +M

√
2 log(2/δ)

T
. (4)

Since
RT =

∑
i

L(h(Xi), Yi)−minh ∈ H
∑
i

L(h(Xi), Yi)

(4) implies that

R(h) ≤ 1

T
minh ∈ H

∑
i

L(h(Xi), Yi) +
RT

T
+M

√
2 log(2/δ)

T

=
1

T

∑
i

L(h∗(Xi), Yi) +
RT

T
+M

√
2 log(2/δ)

T
.
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By Hoeffding’s inequality, with probability at least 1− δ/2,

1

T

∑
i

L(h∗(Xi), Yi) ≤ R(h∗) +M

√
2 log(2/δ)

T
.

Hence,

R(h) ≤ R(h∗) +
RT

T
+ 2M

√
2 log(2/δ)

T
.

�
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