Support Vector Machines

These notes are based on Mohri, Rostamizadeh and Talwalkar (2012).
Some Convex Optimization. Consider
min f(z) subject to gi(z) <0 i=1,...,m.

Define the Lagrangian

L= f(zx)+ Z%‘gj(x)-

The dual function is define by
F(a) =inf L.

A central result in convex optimization is that the original problem can be solved by maxi-
mizing F' subject to a; > 0 and ayg(z;) = 0.

Hyperplanes and SVM’s. Suppose we have data (X1,Y)),...,(X,,Y,) that can be sep-
arated by a hyperplane. Let b+ w”x = 0 be such a hyperplane. Note that Y;(b+ X w) > 1
for all 7. Any re-scaled version of the hyper-plane is the same classifier. So re-scale the
hyper-plane so that

min |b 4w’ X;| = 1.

If x¢ is any point, then using some simple algebra, we find that the distance to the hyperplane
is

We call the distance to the closest point, the margin p. Since | min; |b + w? X;| = 1, we see

that
p = min = .
i ||wl| ||wl|

The support vector machine (SVM) is the hyperplane that maximized the margin. But
maximizing 1/||w|| is the same is minimizing ||w|| which is the same as minimizing (1/2)]]w|?.
So finding the SVM corresponds to:

1
min,, §||w||2 subject to V;(w' X; +b) >1 i=1,...,n.
The Lagrangian for this problem is

1 2 T
L= 5llwll* = ealYi(w"X; +6) — 1]
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where o; > 0 and o[V (w? X; +b) — 1] = 0. If we set V,,L£ = 0 and V,L£ = 0 we get the two
equations

w=> aY;X;=0
0= zz: ;Y.
If we insert w = ). o,;Y;X; into £ and use the fact that >, a;Y; = 0 we get
L=) o - %Z ;Y5 (XTX;).
i irj
This leads to the optimization
maximize Z a; — % Z ;Y Y5 (X X)

i7j

subject to o; > 0 and o;[Yi(wT X; +b) — 1] = 0. Note two importnat facts: (i) this is a
quadratic program so it can be solved quickly and (ii) we don’t need the X;’s we only need
the inner products X! X;.

Consider the constraint o;[YV;(w” X; +b) — 1] = 0. If a; > 0 then Y;(w” X; 4+ b) = 1 which
implies that this point lies on the boundary of the margin. Such a point is called a support
vector. On the other hand, if Y;(w”X; +b) > 1 then o; = 0. Since w = Y, o;Y;X; this
means that the hyperplane only depends on the support vectors.

If (X;,Y;) is a support vector then W1 X; + b =Y;. Since w = Zj a;Y;X;, we see that

b=Y;— Y oV X[ X,

J

Multiply by «;Y; and sum to get
Z o; Vb = Z Y — Z aijin(XZTXj).
i i 1,
Since Y2 =1, w =Y, ;Y;X; and Y, ;¥; = 0 this implies that

O:Zai—]|w|\2.

The margin p is 1/||w]|| so that
, 1 1 1
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p = =
[[w][?
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The Non-separable Case. Usually, the data are not linearly separable. So we can’t
assume that Y;(w? X; + b) > 1. We introduce slack variables & > 0 and instead require

YiWEXi+0) > 1-¢.

This allows points to be incorrectly classified. But it also allows points to be correctly
classified but be inside the margin. We change the optimization problem to

1
min o jw| +CZ&

subject to YV;(wTX; +b) > 1 —¢& and & > 0. The constant C' > 0 controls the amount of
slack that is allowed.

The Lagrangian is
1 2 w?
L=sllulP+CY 6= S aliw Xi+b) —1+&] - Z@@
Setting the derivative to 0 leads to the conditions
0= Z ;Y

C=oo+p
0=q;or Y;(w'X; +b)=1—§
Ozﬁl Ol"fi:().

When «a; > 0 we call X; a support vector. If a; # 0 then
YVi(w' X;+b) =1-¢.

If & = 0 then X; lies on the marginal hyperplane. If & # 0 then §; = 0 which implies
= (. In summary, support vectors lie on the marginal hyperplane or a; = C..

The dual problem has a simple form:
1
i i
subject to 0 < a; < C and ), ;Y; = 0. Again, it is a quadratic program and only involves
inner products of the X;.

Since the VC dimension of hyperplane classifiers is d + 1, we know that, with probability at
least 1 — 9,

(1)

2(d+ 1) log(en/(n + 1)) N \/10g(1/5)‘

n 2n
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But this bound does not use the structure of SVM’s. For this, we turn to margin theory.

Margins. Recall that the margin is

We can improve the VC bound using the margin.

Theorem 1 Suppose that the sample space is contained in {x : ||z|| <r}. Let H be the set
of hyperplanes satisfying ||w|| < A and min; |w” X;| = 1. Then VC(H) < r2A2.

Proof. Suppose that {z1,...,24} can be shattered. Then for y € {—1,+1}% there exists w
such that 1 < y;(w”z;) for all i. Sum over i to get

d< wTZym < [lwl] ||Zyi93i|| <A ||Zyixi||'

This holds for all choices of ;. So it holds if Y; is drawn uniformly over {—1,+1}. Thus
E[Y;Y;] = E[Y;][Y;] = 0 for i # j and E[Y;Y;] = 1. So

d
d < AE|| ) Yol <A [E| Y Yii||?
i=1 i
=A ZE[Y;Y}]xZTx] =A /Zazfx,
3 i

< AVdr?2 = Arvd

so that d < r?A. O

If the data are separable, the hyperplane satisfies ||w|| = 1/p so that A? = 1/p? and hence
d < r?/p*. Plugging this into (1) we get

Rt < R + \/ sl R o

np? 2n

which is dimension independent.

Nonparametric SVM’s. We can get a nonparametric SVM using RKHS’s by replacing x
with a feature map ®(x). Recall that ®(z1)T®(z2) = K(x1,22). So we get a nonparaametric
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SVM by solving
1
max % ai—i E a0 ;YK (X, X;)

i,J
subject to 0 < a; < C and ), a;Y; = 0. The classifier is

h(z) = sign (Z Y;K(X;,z)+ b) :

This is a nonlinear (nonparametric) classifer.



