
Support Vector Machines

These notes are based on Mohri, Rostamizadeh and Talwalkar (2012).

Some Convex Optimization. Consider

min
x
f(x) subject to gi(x) ≤ 0 i = 1, . . . ,m.

Define the Lagrangian

L = f(x) +
∑
j

αjgj(x).

The dual function is define by
F (α) = inf

x
L.

A central result in convex optimization is that the original problem can be solved by maxi-
mizing F subject to αi ≥ 0 and αig(xi) = 0.

Hyperplanes and SVM’s. Suppose we have data (X1, Y1), . . . , (Xn, Yn) that can be sep-
arated by a hyperplane. Let b+wTx = 0 be such a hyperplane. Note that Yi(b+XT

i w) ≥ 1
for all i. Any re-scaled version of the hyper-plane is the same classifier. So re-scale the
hyper-plane so that

min
i
|b+ wTXi| = 1.

If x0 is any point, then using some simple algebra, we find that the distance to the hyperplane
is

|b+ wTx0|
||w||

.

We call the distance to the closest point, the margin ρ. Since |mini |b + wTXi| = 1, we see
that

ρ = min
i

|wTXi + b|
||w||

=
1

||w||
.

The support vector machine (SVM) is the hyperplane that maximized the margin. But
maximizing 1/||w|| is the same is minimizing ||w|| which is the same as minimizing (1/2)||w||2.
So finding the SVM corresponds to:

minw,b
1

2
||w||2 subject to Yi(w

TXi + b) ≥ 1 i = 1, . . . , n.

The Lagrangian for this problem is

L =
1

2
||w||2 −

∑
i

αi[Yi(w
TXi + b)− 1]
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where αi ≥ 0 and αi[Yi(w
TXi + b)− 1] = 0. If we set ∇wL = 0 and ∇bL = 0 we get the two

equations

w =
∑
i

αiYiXi = 0

0 =
∑
i

αiYi.

If we insert w =
∑

i αiYiXi into L and use the fact that
∑

i αiYi = 0 we get

L =
∑
i

αi −
1

2

∑
i,j

αiαjYiYj(X
T
i Xj).

This leads to the optimization

maximize
∑
i

αi −
1

2

∑
i,j

αiαjYiYj(X
T
i Xj)

subject to αi ≥ 0 and αi[Yi(w
TXi + b) − 1] = 0. Note two importnat facts: (i) this is a

quadratic program so it can be solved quickly and (ii) we don’t need the Xi’s we only need
the inner products XT

i Xj.

Consider the constraint αi[Yi(w
TXi + b) − 1] = 0. If αi > 0 then Yi(w

TXi + b) = 1 which
implies that this point lies on the boundary of the margin. Such a point is called a support
vector. On the other hand, if Yi(w

TXi + b) > 1 then αi = 0. Since w =
∑

i αiYiXi this
means that the hyperplane only depends on the support vectors.

If (Xi, Yi) is a support vector then W TXi + b = Yi. Since w =
∑

j αjYjXj, we see that

b = Yi −
∑
j

αjYjX
T
j Xi.

Multiply by αiYi and sum to get∑
i

αiYib =
∑
i

αiY
2
i −

∑
i,j

αiαjYiYj(X
T
i Xj).

Since Y 2
i = 1, w =

∑
i αiYiXi and

∑
i αiYi = 0 this implies that

0 =
∑
i

αi − ||w||2.

The margin ρ is 1/||w|| so that

ρ2 =
1

||w||2
=

1∑
i αi

=
1

||α||1
.
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The Non-separable Case. Usually, the data are not linearly separable. So we can’t
assume that Yi(w

TXi + b) ≥ 1. We introduce slack variables ξi ≥ 0 and instead require

Yi(W
T
i Xi + b) ≥ 1− ξi.

This allows points to be incorrectly classified. But it also allows points to be correctly
classified but be inside the margin. We change the optimization problem to

min
w,b,ξ

1

2
||w||2 + C

∑
i

ξi

subject to Yi(w
TXi + b) ≥ 1 − ξi and ξi ≥ 0. The constant C ≥ 0 controls the amount of

slack that is allowed.

The Lagrangian is

L =
1

2
||w||2 + C

∑
i

ξi −
∑
i

αi[Yi(w
TXi + b)− 1 + ξi]−

∑
i

βiξi.

Setting the derivative to 0 leads to the conditions

w =
∑
i

αiYiXi

0 =
∑
i

αiYi

C = αi + βi

0 = αi or Yi(w
TXi + b) = 1− ξi

0 = βi or ξi = 0.

When αi > 0 we call Xi a support vector. If αi 6= 0 then

Yi(w
TXi + b) = 1− ξi.

If ξi = 0 then Xi lies on the marginal hyperplane. If ξi 6= 0 then βi = 0 which implies
αi = C. In summary, support vectors lie on the marginal hyperplane or αi = C.

The dual problem has a simple form:

max
α

∑
i

αi −
1

2

∑
i,j

αiαjYiYjX
T
i Xj

subject to 0 ≤ αi ≤ C and
∑

i αiYi = 0. Again, it is a quadratic program and only involves
inner products of the Xi.

Since the VC dimension of hyperplane classifiers is d+ 1, we know that, with probability at
least 1− δ,

R(h) ≤ R(ĥ) +

√
2(d+ 1) log(en/(n+ 1))

n
+

√
log(1/δ)

2n
. (1)
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But this bound does not use the structure of SVM’s. For this, we turn to margin theory.

Margins. Recall that the margin is

ρ = min
i

Yi(w
TXi + b)

||w||
.

We can improve the VC bound using the margin.

Theorem 1 Suppose that the sample space is contained in {x : ||x|| ≤ r}. Let H be the set
of hyperplanes satisfying ||w|| ≤ Λ and mini |wTXi| = 1. Then VC(H) ≤ r2Λ2.

Proof. Suppose that {x1, . . . , xd} can be shattered. Then for y ∈ {−1,+1}d there exists w
such that 1 ≤ yi(w

Txi) for all i. Sum over i to get

d ≤ wT
∑
i

yixi ≤ ||w|| ||
∑
i

yixi|| ≤ Λ ||
∑
i

yixi||.

This holds for all choices of yi. So it holds if Yi is drawn uniformly over {−1,+1}. Thus
E[YiYj] = E[Yi][Yj] = 0 for i 6= j and E[YiYi] = 1. So

d ≤ ΛE||
d∑
i=1

Yixi|| ≤ Λ

√
E||
∑
i

Yixi||2

= Λ

√∑
i,j

E[YiYj]xTi xj = Λ

√∑
i

xTi xi

≤ Λ
√
dr2 = Λr

√
d

so that d ≤ r2Λ. �

If the data are separable, the hyperplane satisfies ||w|| = 1/ρ so that Λ2 = 1/ρ2 and hence
d ≤ r2/ρ2. Plugging this into (1) we get

R(h) ≤ R(ĥ) +

√
2r2 log((enρ2)/r2)

nρ2
+

√
log(1/δ)

2n
(2)

which is dimension independent.

Nonparametric SVM’s. We can get a nonparametric SVM using RKHS’s by replacing x
with a feature map Φ(x). Recall that Φ(x1)

TΦ(x2) = K(x1, x2). So we get a nonparaametric
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SVM by solving

max
α

∑
i

αi −
1

2

∑
i,j

αiαjYiYjK(Xi, Xj)

subject to 0 ≤ αi ≤ C and
∑

i αiYi = 0. The classifier is

h(x) = sign

(∑
i

YiK(Xi, x) + b

)
.

This is a nonlinear (nonparametric) classifer.
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