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Summary. We present a new class of methods for high dimensional non-parametric regression
and classification called sparse additive models. Our methods combine ideas from sparse linear
modelling and additive non-parametric regression. We derive an algorithm for fitting the models
that is practical and effective even when the number of covariates is larger than the sample
size. Sparse additive models are essentially a functional version of the grouped lasso of Yuan
and Lin. They are also closely related to the COSSO model of Lin and Zhang but decouple
smoothing and sparsity, enabling the use of arbitrary non-parametric smoothers. We give an
analysis of the theoretical properties of sparse additive models and present empirical results
on synthetic and real data, showing that they can be effective in fitting sparse non-parametric
models in high dimensional data.
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1. Introduction

Substantial progress has been made recently on the problem of fitting high dimensional
linear regression models of the form Yi=XT

i β+ "i, for i= 1, . . . , n. Here Yi is a real-valued
response, Xi is a predictor and "i is a mean 0 error term. Finding an estimate of β when p > n

that is both statistically well behaved and computationally efficient has proved challenging;
however, under the assumption that the vector β is sparse, the lasso estimator (Tibshirani,
1996) has been remarkably successful. The lasso estimator β̂ minimizes the l1-penalized sum of
squares

∑
i

.Yi−XT
i β/2+λ

p∑
j=1
|βj|

with the l1-penalty ‖β‖1 encouraging sparse solutions, where many components β̂j are 0. The
good empirical success of this estimator has been recently backed up by results confirming that
it has strong theoretical properties; see Bunea et al. (2007), Greenshtein and Ritov (2004), Zhao
and Yu (2007), Meinshausen and Yu (2006) and Wainwright (2006).

The non-parametric regression model Yi=m.Xi/+"i, where m is a general smooth function,
relaxes the strong assumptions that are made by a linear model but is much more challenging
in high dimensions. Hastie and Tibshirani (1999) introduced the class of additive models of the
form
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Yi=
p∑

j=1
fj.Xij/+ "i: .1/

This additive combination of univariate functions—one for each covariate Xj—is less general
than joint multivariate non-parametric models but can be more interpretable and easier to fit;
in particular, an additive model can be estimated by using a co-ordinate descent Gauss–Seidel
procedure, called backfitting. Unfortunately, additive models only have good statistical and
computational behaviour when the number of variables p is not large relative to the sample size
n, so their usefulness is limited in the high dimensional setting.

In this paper we investigate sparse additive models (SPAMs), which extend the advantages of
sparse linear models to the additive non-parametric setting. The underlying model is the same
as in equation (1), but we impose a sparsity constraint on the index set {j : fj �≡0} of functions
fj that are not identically zero. Lin and Zhang (2006) have proposed COSSO, an extension of
the lasso to this setting, for the case where the component functions fj belong to a reproducing
kernel Hilbert space. They penalized the sum of the reproducing kernel Hilbert space norms of
the component functions. Yuan (2007) proposed an extension of the non-negative garrotte to
this setting. As with the parametric non-negative garrotte, the success of this method depends
on the initial estimates of component functions fj.

In Section 3, we formulate an optimization problem in the population setting that induces
sparsity. Then we derive a sample version of the solution. The SPAM estimation procedure
that we introduce allows the use of arbitrary non-parametric smoothing techniques, effectively
resulting in a combination of the lasso and backfitting. The algorithm extends to classifica-
tion problems by using generalized additive models. As we explain later, SPAMs can also be
thought of as a functional version of the grouped lasso (Antoniadis and Fan, 2001; Yuan and
Lin, 2006).

The main results of this paper include the formulation of a convex optimization problem
for estimating a SPAM, an efficient backfitting algorithm for constructing the estimator and
theoretical results that analyse the effectiveness of the estimator in the high dimensional setting.
Our theoretical results are of two different types. First, we show that, under suitable choices
of the design parameters, the SPAM backfitting algorithm recovers the correct sparsity pattern
asymptotically; this is a property that we call sparsistency, as a shorthand for ‘sparsity pattern
consistency’. Second, we show that the estimator is persistent, in the sense of Greenshtein and
Ritov (2004), which is a form of risk consistency.

In the following section we establish notation and assumptions. In Section 3 we formulate
SPAMs as an optimization problem and derive a scalable backfitting algorithm. Examples show-
ing the use of our sparse backfitting estimator on high dimensional data are included in Section
5. In Section 6.1 we formulate the sparsistency result, when orthogonal function regression is
used for smoothing. In Section 6.2 we give the persistence result. Section 7 contains a discussion
of the results and possible extensions. Proofs are contained in Appendix A.

The statements of the theorems in this paper were given, without proof, in Ravikumar et al.
(2008). The backfitting algorithm was also presented there. Related results were obtained in
Meier et al. (2008) and Koltchinskii and Yuan (2008).

2. Notation and assumptions

We assume that we are given independent data .X1, Y1/, . . . , .Xn, Yn/ where Xi = .Xi1, . . . ,
Xij, . . . , Xip/T ∈ [0, 1]p and

Yi=m.Xi/+ "i .2/
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with "i∼N.0,σ2/ independent of Xi and

m.x/=
p∑

j=1
fj.xj/: .3/

Let μ denote the distribution of X , and let μj denote the marginal distribution of Xj for each
j=1, . . . , p. For a function fj on [0, 1] denote its L2.μj/ norm by

‖fj‖μj =
√{∫ 1

0
f 2

j .x/dμj.x/

}
=√E{fj.Xj/2}: .4/

When the variable Xj is clear from the context, we remove the dependence on μj in the notation
‖·‖μj and simply write ‖fj‖.

For j∈{1, . . . , p}, let Hj denote the Hilbert subspace L2.μj/ of measurable functions fj.xj/

of the single scalar variable xj with zero mean, E{fj.Xj/}=0. Thus, Hj has the inner product

〈fj, f ′j〉=E{fj.Xj/f ′j.Xj/} .5/

and ‖fj‖=√E{fj.Xj/2}<∞. Let H=H1⊕H2⊕ . . .⊕Hp denote the Hilbert space of func-
tions of .x1, . . . , xp/ that have the additive form: m.x/=Σjfj.xj/, with fj ∈Hj, j=1, . . . , p.

Let {ψjk, k=0, 1, . . .} denote a uniformly bounded, orthonormal basis with respect to L2[0, 1].
Unless stated otherwise, we assume that fj ∈Tj where

Tj=
{

fj ∈Hj : fj.xj/=
∞∑

k=0
βjkψjk.xj/,

∞∑
k=0

β2
jkk2νj �C2

}
.6/

for some 0<C<∞. We shall take νj=2 although the extension to other levels of smoothness is
straightforward. It is also possible to adapt to νj although we do not pursue that direction here.

Let Λmin.A/ and Λmax.A/ denote the minimum and maximum eigenvalues of a square matrix
A. If v= .v1, . . . , vk/T is a vector, we use the norms

‖v‖=
√(

k∑
j=1

v2
j

)
, ‖v‖1=

k∑
j=1
|vj|, ‖v‖∞=max

j
|vj|: .7/

3. Sparse backfitting

The outline of the derivation of our algorithm is as follows. We first formulate a population
level optimization problem and show that the minimizing functions can be obtained by iterat-
ing through a series of soft thresholded univariate conditional expectations. We then plug in
smoothed estimates of these univariate conditional expectations, to derive our sparse backfitting
algorithm.

3.1. Population sparse additive models
For simplicity, assume that E.Yi/= 0. The standard additive model optimization problem in
L2.μ/ (the population setting) is

min
fj∈Hj ,1�j�p

[
E

{
Y −

p∑
j=1

fj.Xj/

}2]
.8/

where the expectation is taken with respect to X and the noise ". Now consider the following
modification of this problem that introduces a scaling parameter for each function, and that
imposes additional constraints:
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min
β∈Rp,gj∈Hj

[
E

{
Y −

p∑
j=1

βj gj.Xj/

}2]
.9/

subject to
p∑

j=1
|βj|�L, .10/

E.g2
j /=1, j=1, . . . , p, .11/

noting that gj is a function whereas β= .β1, . . . ,βp/T is a vector. The constraint that β lies in
the l1-ball {β :‖β‖1 �L} encourages sparsity of the estimated β, just as for the parametric lasso
(Tibshirani, 1996). It is convenient to absorb the scaling constants βj into the functions fj, and
to re-express the minimization in the following equivalent Lagrangian form:

L.f ,λ/= 1
2

E

{
Y −

p∑
j=1

fj.Xj/

}2

+λ
p∑

j=1

√
E{f 2

j .Xj/}: .12/

Theorem 1. The minimizers fj ∈Hj of equation (12) satisfy

fj=
[

1− λ√
E.P2

j /

]
+

Pj almost surely .13/

where [·]+ denotes the positive part, and Pj=E.Rj|Xj/ denotes the projection of the residual
Rj=Y −Σk �=jfk.Xk/ onto Hj.

An outline of the proof of this theorem appears in Ravikumar et al. (2008). A formal proof
is given in Appendix A. At the population level, the fjs can be found by a co-ordinate descent
procedure that fixes .fk : k �= j/ and fits fj by equation (13), and then iterates over j.

3.2. Data version of sparse additive models
To obtain a sample version of the population solution, we insert sample estimates into the pop-
ulation algorithm, as in standard backfitting (Hastie and Tibshirani, 1999). Thus, we estimate
the projection Pj=E.Rj|Xj/ by smoothing the residuals:

P̂j=SjRj .14/

where Sj is a linear smoother, such as a local linear or kernel smoother. Let

ŝj= 1√
n
‖P̂j‖=√mean.P̂

2
j / .15/

be the estimate of
√

E.P2
j /. Using these plug-in estimates in the co-ordinate descent procedure

yields the SPAM backfitting algorithm that is given in Table 1.
This algorithm can be seen as a functional version of the co-ordinate descent algorithm for

solving the lasso. In particular, if we solve the lasso by iteratively minimizing with respect to a
single co-ordinate, each iteration is given by soft thresholding; Table 2. Convergence properties
of variants of this simple algorithm have been recently treated by Daubechies et al. (2004, 2007).
Our sparse backfitting algorithm is a direct generalization of this algorithm, and it reduces to
it in the case where the smoothers are local linear smoothers with large bandwidths, i.e., as the
bandwidth approaches∞, the local linear smoother approaches a global linear fit, yielding the
estimator P̂j.i/= β̂jXij. When the variables are standardized,
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Table 1. SPAM backfitting algorithm†

Input: data .Xi, Yi/, regularization parameter λ
Initialize f̂j=0, for j=1, . . . , p
Iterate until convergence, for each j=1, . . . , p

Step 1: compute the residual, Rj=Y −Σk �=jf̂k.Xk/
Step 2: estimate Pj=E.Rj |Xj/ by smoothing, P̂j=SjRj
Step 3: estimate the norm, ŝ

j2 = .1=n/Σn
i=1P̂2

j .i/

Step 4: soft threshold, f̂j= [1−λ=ŝj ]+P̂j

Step 5: centre, f̂j← f̂j− mean .f̂j/.

Output: component functions f̂j and estimator m̂.Xi/=Σjf̂j.Xij/

†The first two steps in the iterative algorithm are the usual backfitting
procedure; the remaining steps carry out functional soft thresholding.

Table 2. Co-ordinate descent lasso†

Input: data .Xi, Yi/, regularization parameter λ
Initialize β̂j=0, for j=1, . . . , p
Iterate until convergence, for each j=1, . . . , p

Step 1: compute the residual, Rj=Y −Σk �=j β̂kXk
Step 2: project residual onto Xj , Pj=XT

j Rj

Step 3: soft threshold, β̂j= [1−λ=|Pj |]+Pj

Output: estimator m̂.Xi/=Σj β̂jXij

†The SPAM backfitting algorithm is a functional ver-
sion of the co-ordinate descent algorithm for the lasso,
which computes β̂=arg min. 1

2‖Y −Xβ‖22+λ‖β‖1/.

ŝj=
√(

1
n

n∑
i=1

β̂
2
jX2

ij

)
=|β̂j|

so the soft thresholding in step 4 of the SPAM backfitting algorithm is the same as the soft
thresholding in step 3 in the co-ordinate descent lasso algorithm.

3.3. Basis functions
It is useful to express the model in terms of basis functions. Recall that Bj= .ψjk : k=1, 2, . . ./
is an orthonormal basis for Tj and that supx |ψjk.x/|�B for some B. Then

fj.xj/=
∞∑

k=1
βjkψjk.xj/ .16/

where βjk=
∫

fj.xj/ψjk.xj/dxj.
Let us also define

f̃j.xj/=
d∑

k=1
βjkψjk.xj/ .17/

where d = dn is a truncation parameter. For the Sobolev space Tj of order 2 we have that
‖fj− f̃j‖2=O.1=d4/. Let S={j :fj �=0}. Assuming the sparsity condition |S|=O.1/ it follows
that ‖m− m̃‖2=O.1=d4/ where m̃=Σjf̃j. The usual choice is d�n1=5, yielding truncation bias
‖m− m̃‖2=O.n−4=5/.
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In this setting, the smoother can be taken to be the least squares projection onto the trun-
cated set of basis functions {ψj1, . . . ,ψjd}; this is also called orthogonal series smoothing. Let
Ψj denote the n× dn matrix that is given by Ψj.i, l/=ψj,l.Xij/. The smoothing matrix is the
projection matrix Sj =Ψj.ΨT

j Ψj/−1ΨT
j . In this case, the backfitting algorithm in Table 1 is a

co-ordinate descent algorithm for minimizing

1
2n

∥∥∥∥Y −
p∑

j=1
Ψjβj

∥∥∥∥
2

2
+λ

p∑
j=1

√(
1
n
βT

j ΨT
j Ψjβj

)

which is the sample version of equation (12). This is the Lagrangian of a second-order cone
program, and standard convexity theory implies the existence of a minimizer. In Section 6.1
we prove theoretical properties of SPAMs by assuming that this particular smoother is being used.

3.4. Connection with the grouped lasso
The SPAM model can be thought of as a functional version of the grouped lasso (Yuan and Lin,
2006) as we now explain. Consider the following linear regression model with multiple factors:

Y =
pn∑

j=1
Xjβj+ "=Xβ+ ", .18/

where Y is an n× 1 response vector, " is an n× 1 vector of independent and identically dis-
tributed mean 0 noise, Xj is an n× dj matrix corresponding to the jth factor and βj is the
corresponding dj× 1 coefficient vector. Assume for convenience (in this subsection only) that
each Xj is orthogonal, so that XT

j Xj = Idj , where Idj is the dj × dj identity matrix. We use
X= .X1, . . . , Xpn/ to denote the full design matrix and use β= .βT

1 , : : : ,βT
pn

/T to denote the
parameter.

The grouped lasso estimator is defined as the solution of the following convex optimization
problem:

β̂.λn/=arg min
β

(
‖Y −Xβ‖22+λn

pn∑
j=1

√
dj‖βj‖

)
.19/

where
√

dj scales the jth term to compensate for different group sizes.
It is obvious that, when dj=1 for j=1, . . . , pn, the grouped lasso becomes the standard lasso.

From the Karush–Kuhn–Tucker optimality conditions, a necessary and sufficient condition for
β̂= .β̂T

1 , . . . , β̂T
p/T to be the grouped lasso solution is

−XT
j .Y −Xβ̂/+ λ

√
djβ̂j

‖β̂j‖
=0, ∀β̂j �=0, .20/

‖XT
j .Y −Xβ̂/‖�λ

√
dj, ∀β̂j=0:

On the basis of this stationary condition, an iterative blockwise co-ordinate descent algorithm
can be derived; as shown by Yuan and Lin (2006), a solution to equation (20) satisfies

β̂j=
[

1− λ
√

dj

‖Sj‖
]
+

Sj .21/

where Sj =XT
j .Y −Xβ\j/, with β\j = .βT

1 , . . . ,βT
j−1, 0T,βT

j+1, . . . ,βT
pn

/. By iteratively applying
equation (21), the grouped lasso solution can be obtained.

As discussed in Section 1, the COSSO model of Lin and Zhang (2006) replaces the lasso
constraint on Σj |βj| with a reproducing kernel Hilbert space constraint. The advantage of our
formulation is that it decouples smoothness (gj ∈Tj) and sparsity (Σj |βj|�L). This leads to a
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simple algorithm that can be carried out with any non-parametric smoother and scales easily
to high dimensions.

4. Choosing the regularization parameter

We choose λ by minimizing an estimate of the risk. Let νj be the effective degrees of freedom
for the smoother on the jth variable, i.e. νj = tr.Sj/ where Sj is the smoothing matrix for the
jth dimension. Also let σ̂2 be an estimate of the variance. Define the total effective degrees of
freedom as

df.λ/=∑
j

νj I.‖f̂j‖ �=0/: .22/

Two estimates of risk are

Cp= 1
n

n∑
i=1

{
Yi−

p∑
j=1

f̂j.Xj/

}2

+ 2σ̂2

n
df.λ/ .23/

and

GCV.λ/=
.1=n/

n∑
i=1

{
Yi−

∑
j

f̂j.Xij/

}2

{1−df.λ/=n}2 : .24/

The first is Cp and the second is generalized cross-validation but with degrees of freedom defined
by df.λ/. A proof that these are valid estimates of risk is not currently available; thus, these should
be regarded as heuristics.

On the basis of the results in Wasserman and Roeder (2007) about the lasso, it seems likely
that choosing λ by risk estimation can lead to overfitting. One can further clean the estimate by
testing H0 : fj=0 for all j such that f̂j �=0. For example, the tests in Fan and Jiang (2005) could
be used.

5. Examples

To illustrate the method, we consider a few examples.

5.1. Synthetic data
Wegeneratedn=100observations foranadditivemodelwithp=100andfourrelevantvariables,

Yi=
4∑

j=1
fj.Xij/+ "i,

where "i∼N.0, 1/; the relevant component functions are given by

f1.x/=−sin.1:5x/,

f2.x/=x3+1:5.x−0:5/2,

f3.x/=−φ.x, 0:5, 0:82/,

f4.x/= sin{exp.−0:5x/}
where φ.·, 0:5, 0:82/ is the Gaussian probability distribution function with mean 0.5 and stan-
dard deviation 0.8. The data therefore have 96 irrelevant dimensions. The covariates are sampled
independent and identically distributed from uniform.−2:5, 2:5/. All the component functions
are standardized, i.e.
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Fig. 1. Simulated data: (a) empirical l2-norm of the estimated components as plotted against the regular-
ization parameter λ (the value on the x -axis is proportional to Σj kf̂j k); (b) Cp-scores against the amount
of regularization (

:::, value of λ which has the smallest Cp-score); estimated ( ) versus true additive
component functions (– – –) for (c)–(f) the first four relevant dimensions and (g)–(j) the first four irrelevant
dimensions ((c) l1 D97:05; (d) l1 D88:36; (e) l1 D90:65; (f) l1 D79:26; (g)–(j) l1 D0)
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1
n

n∑
i=1

fj.Xij/=0,

1
n−1

n∑
i=1

f 2
j .Xij/=1:

.25/

The results of applying SPAMs are summarized in Fig. 1, using the plug-in bandwidths

hj=0:6sd.Xj/=n1=5:

Fig. 1(a) shows regularization paths as the parameter λ varies; each curve is a plot of ‖f̂j.λ/‖
versus

p∑
k=1
‖f̂k.λ/‖

/
maxλ

{
p∑

k=1
‖f̂k.λ/‖

}
.26/

for a particular variable Xj. The estimates are generated efficiently over a sequence of λ-values
by ‘warm starting’ f̂j.λt/ at the previous value f̂j.λt−1/. Fig. 1(b) shows the Cp-statistic as a
function of regularization level.

5.2. Functional sparse coding
Olshausen and Field (1996) proposed a method of obtaining sparse representations of data such
as natural images; the motivation comes from trying to understand principles of neural coding.
In this example we suggest a non-parametric form of sparse coding.

(a) (b)

Fig. 2. Comparison of sparse reconstructions by using (a) the lasso and (b) SPAMs
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Let {yi}i=1,:::,N be the data to be represented with respect to some learned basis, where each
instance yi ∈Rn is an n-dimensional vector. The linear sparse coding optimization problem is

min
β,X

{
N∑

i=1

(
1

2n
‖yi−Xβi‖2+λ‖βi‖1

)}
.27/

such that

‖Xj‖�1: .28/

Here X is an n×p matrix with columns Xj, representing the ‘dictionary’ entries or basis vec-
tors to be learned. It is not required that the basis vectors are orthogonal. The l1-penalty on
the coefficients βi encourages sparsity, so each data vector yi is represented by only a small
number of dictionary elements. Sparsity allows the features to specialize, and to capture salient
properties of the data.

This optimization problem is not jointly convex in βi and X. However, for fixed X , each
weight vector βi is computed by running the lasso. For fixed βi, the optimization is similar to
ridge regression and can be solved efficiently. Thus, an iterative procedure for (approximately)
solving this optimization problem is easy to derive.

In the case of sparse coding of natural images, as in Olshausen and Field (1996), the basis vec-
tors Xj encode basic edge features at different scales and spatial orientations. In the functional
version, we no longer assume a linear parametric fit between the dictionary X and the data
y. Instead, we model the relationship by using an additive model. This leads to the following
optimization problem for functional sparse coding:

min
f ,X

[
N∑

i=1

{
1

2n

∥∥∥∥yi−
p∑

j=1
f i

j.Xj/

∥∥∥∥
2

+λ
p∑

j=1
‖f i

j‖
}]

.29/

such that

‖Xj‖�1, j=1, . . . , p: .30/

Fig. 2 illustrates the reconstruction of various image patches by using the sparse linear model
compared with the SPAM. Local linear smoothing was used with a Gaussian kernel having fixed
bandwidth h=0:05 for all patches and all codewords. The codewords Xj are those obtained by
using the Olshausen-Field procedure; these become the design points in the regression estima-
tors. Thus, a codeword for a 16×16 patch corresponds to a vector Xj of dimension 256, with
each Xij the grey level for a particular pixel.

6. Theoretical properties

6.1. Sparsistency
In the case of linear regression, with fj.Xj/=βÅT

j Xj, several researchers have shown that, under
certain conditions on n and p, the number of relevant variables s=|supp.βÅ/|, and the design
matrix X , the lasso recovers the sparsity pattern asymptotically, i.e. the lasso estimator β̂n is
sparsistent:

P{supp.βÅ/= supp.β̂n/}→1: .31/

Here, supp.β/={j :βj �=0}. References include Wainwright (2006), Meinshausen and Bühlmann
(2006), Zou (2005), Fan and Li (2001) and Zhao and Yu (2007). We show a similar result for
SPAMs under orthogonal function regression.
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In terms of an orthogonal basis ψ, we can write

Yi=
p∑

j=1

∞∑
k=1

βÅ
jkψjk.Xij/+ "i: .32/

To simplify the notation, let βj be the dn-dimensional vector {βjk, k= 1, . . . , dn} and let Ψj

be the n×dn matrix Ψj.i, k/=ψjk.Xij/. If A⊂{1, . . . , p}, we denote by ΨA the n×d|A|matrix
where, for each j∈A, Ψj appears as a submatrix in the natural way.

We now analyse the sparse backfitting algorithm of Table 1 by assuming that an orthogonal
series smoother is used to estimate the conditional expectation in its step 2. As noted earlier, an
orthogonal series smoother for a predictor Xj is the least squares projection onto a truncated
set of basis functions {ψj1, . . . ,ψjd}. Our optimization problem in this setting is

min
β

{
1

2n

∥∥∥∥Y −
p∑

j=1
Ψjβj

∥∥∥∥
2

2
+λ

p∑
j=1

√(
1
n
βT

j ΨT
j Ψjβj

)}
: .33/

Combined with the soft thresholding step, the update for fj in the algorithm in Table 1 can thus
be seen to solve the problem

min
β

{
1

2n
‖Rj−Ψjβj‖22+λn

√(
1
n
βT

j ΨT
j Ψjβj

)}

where ‖v‖22 denotes Σn
i=1v2

i and Rj=Y −Σl �=jΨlβl is the residual for fj. The sparse backfitting
algorithm thus solves

min
β

{Rn.β/+λn Ω.β/}=min
β

(
1

2n

∥∥∥∥Y −
p∑

j=1
Ψjβj

∥∥∥∥
2

2
+λn

p∑
j=1

∥∥∥∥ 1√
n
Ψjβj

∥∥∥∥
2

)
.34/

where Rn denotes the squared error term and Ω denotes the regularization term, and each βj is
a dn-dimensional vector. Let S denote the true set of variables {j : fj �=0}, with s=|S|, and let
Sc denote its complement. Let Ŝn= {j : β̂j �= 0} denote the estimated set of variables from the
minimizer β̂n, with corresponding function estimates f̂j.xj/=Σdn

k=1β̂jkψjk.xj/. For the results in
this section, we shall treat the covariates as fixed. A preliminary version of the following result
is stated, without proof, in Ravikumar et al. (2008).

Theorem 2. Suppose that the following conditions hold on the design matrix X in the orthog-
onal basis ψ:

Λmax

(
1
n
ΨT

S ΨS

)
�Cmax <∞, .35/

Λmin

(
1
n
ΨT

S ΨS

)
�Cmin > 0, .36/

max
j∈Sc

∥∥∥∥
(

1
n
ΨT

j ΨS

)(
1
n
ΨT

S ΨS

)−1∥∥∥∥�
√(

Cmin

Cmax

)
1− δ√

s
, for some 0 < δ�1: .37/

Assume that the truncation dimension dn satisfies dn→∞ and dn=o.n/. Furthermore, sup-
pose the following conditions, which relate the regularization parameter λn to the design
parameters n and p, the number of relevant variables s and the truncation size dn:

s

dnλn
→0, .38/
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dn log{dn.p− s/}
nλ2

n

→0, .39/

1
ρÅ

n

[√{
log.sdn/

n

}
+ s3=2

dn
+λn
√

.sdn/

]
→0 .40/

where ρÅ
n =minj∈S‖βÅ

j ‖∞. Then the solution β̂n to problem (33) is unique and satisfies Ŝn=S

with probability approaching 1.

This result parallels the theorem of Wainwright (2006) on model selection consistency of
the lasso; however, technical subtleties arise because of the truncation dimension dn which is
increasing with sample size, and the matrix ΨT

j Ψ which appears in the regularization of βj. As
a result, the operator norm rather than the∞-norm appears in the incoherence condition (37).
Note, however, that condition (37) implies that

‖ΨT
ScΨS.ΨT

S ΨS/−1‖∞=max
j∈Sc
‖ΨT

j ΨS.ΨT
S ΨS/−1‖∞ .41/

�
√(

Cmindn

Cmax

)
.1− δ/ .42/

since .1=
√

n/‖A‖∞�‖A‖�√m‖A‖∞ for an m×n matrix A. This relates it to the more standard
incoherence conditions that have been used for sparsistency in the case of the lasso.

The following corollary, which imposes the additional condition that the number of relevant
variables is bounded, follows directly. It makes explicit how to choose the design parameters dn

andλn, and implies a condition on the fastest rate at which the minimum normρÅ
n can approach 0.

Corollary 1. Suppose that s=O.1/, and assume that the design conditions (35)–(37) hold. If
the truncation dimension dn, regularization parameter λn and minimum norm ρÅ

n satisfy

dn�n1=3, .43/

λn� log.np/

n1=3 , .44/

1
ρÅ

n

=o

{
n1=6

log.np/

}
.45/

then P.Ŝn=S/→1.

The following proposition clarifies the implications of condition (45), by relating the sup-norm
‖βj‖∞ to the function norm ‖fj‖2.

Proposition 1. Suppose that f.x/=Σkβkψk.x/ is in the Sobolev space of order ν> 1
2 , so that

Σ∞i=1β
2
i i2ν �C2 for some constant C. Then

‖f‖2=‖β‖2 � c‖β‖2ν=.2ν+1/
∞ .46/

for some constant c.

For instance, the result of corollary 1 allows the norms of the coefficients βj to decrease as
‖βj‖∞ = log2.np/=n1=6. In the case ν = 2, this would allow the norms ‖fj‖2 of the relevant
functions to approach 0 at the rate log8=5.np/=n2=15.
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6.2. Persistence
The previous assumptions are very strong. They can be weakened at the expense of obtaining
weaker results. In particular, in this section we do not assume that the true regression function
is additive. We use arguments like those in Juditsky and Nemirovski (2000) and Greenshtein
and Ritov (2004) in the context of linear models. In this section we treat X as random and we
use triangular array asymptotics, i.e. the joint distribution for the data can change with n. Let
.X, Y/ denote a new pair (independent of the observed data) and define the predictive risk when
predicting Y with v.X/ by

R.v/=E{Y −v.X/}2: .47/

When v.x/=Σjβj gj.xj/ we also write the risk as R.β, g/ where β = .β1, . . . ,βp/ and g =
.g1, . . . , gp/. Following Greenshtein and Ritov (2004) we say that an estimator m̂n is persis-
tent (risk consistent) relative to a class of functions Mn, if

R.m̂n/−R.mÅ
n /

P→0 .48/

where

mÅ
n =arg min

v∈Mn

{R.v/} .49/

is the predictive oracle. Greenshtein and Ritov (2004) showed that the lasso is persistent for
Mn={l.x/=xTβ :‖β‖1 �Ln} and Ln=o{n= log.n/1=4}. Note that mÅ

n is the best linear approx-
imation (in prediction risk) in Mn but the true regression function is not assumed to be linear.
Here we show a similar result for SPAMs.

In this section, we assume that the SPAM estimator m̂n is chosen to minimize

1
n

n∑
i=1

{
Yi−

∑
j

βj gj.Xij/

}2

.50/

subject to ‖β‖1 �Ln and gj ∈Tj. We make no assumptions about the design matrix. Let Mn≡
Mn.Ln/ be defined by

Mn=
{

m : m.x/=
pn∑

j=1
βj gj.xj/ : E.gj/=0, E.g2

j /=1,
∑
j

|βj|�Ln

}
.51/

and let mÅ
n =arg minv∈Mn

{R.v/}.

Theorem 3. Suppose that pn � exp.nξ/ for some ξ< 1. Then,

R.m̂n/−R.mÅ
n /=OP

(
L2

n

n.1−ξ/=2

)
.52/

and hence, if Ln=o.n.1−ξ/=4/, then the SPAM is persistent.

7. Discussion

The results that are presented here show how many of the recently established theoretical prop-
erties of l1-regularization for linear models extend to SPAMs. The sparse backfitting algorithm
that we have derived is attractive because it decouples smoothing and sparsity, and can be used
with any non-parametric smoother. It thus inherits the nice properties of the original backfitting
procedure. However, our theoretical analyses have made use of a particular form of smoothing,
using a truncated orthogonal basis. An important problem is thus to extend the theory to cover
more general classes of smoothing operators. Convergence properties of the SPAM backfitting
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algorithm should also be investigated; convergence of special cases of standard backfitting was
studied by Buja et al. (1989).

An additional direction for future work is to develop procedures for automatic bandwidth
selection in each dimension. We have used plug-in bandwidths and truncation dimensions dn in
our experiments and theory. It is of particular interest to develop procedures that are adaptive
to different levels of smoothness in different dimensions. It would also be of interest to consider
more general penalties of the form pλ.‖fj‖/, as in Fan and Li (2001).

Finally, we note that, although we have considered basic additive models that allow functions
of individual variables, it is natural to consider interactions, as in the functional analysis-of-
variance model. One challenge is to formulate suitable incoherence conditions on the functions
that enable regularization-based procedures or greedy algorithms to recover the correct inter-
action graph. In the parametric setting, one result in this direction is Wainwright et al. (2007).
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Appendix A: Proofs

A.1. Proof of theorem 1
Consider the minimization of the Lagrangian

min
{fj∈Hj}

{L.f ,λ/}≡ 1
2

E

{
Y −

p∑
j=1

fj.Xj/

}2

+λ
p∑

j=1

√
E{fj.Xj/

2} .53/

with respect to fj ∈Hj , holding the other components{fk, k �=j}fixed. The stationary condition is obtained
by setting the Fréchet derivative to 0. Denote by @jL.f ,λ;ηj/ the directional derivative with respect to fj

in the direction ηj.Xj/∈Hj{E.ηj/=0, E.η2
j /<∞}. Then the stationary condition can be formulated as

@jL.f ,λ;ηj/= 1
2 E{.fj−Rj+λvj/ηj}=0 .54/

where Rj=Y−Σk �=jfk is the residual for fj , and vj ∈Hj is an element of the subgradient @
√

E.f 2
j /, satisfying

vj=fj=
√

E.f 2
j / if E.f 2

j / �=0 and vj ∈{uj ∈Hj|E.u2
j /�1} otherwise.

Using iterated expectations, the above condition can be rewritten as

E[{fj+λvj−E.Rj|Xj/}ηj ]=0: .55/

But, since fj−E.Rj|Xj/+λvj ∈Hj , we can compute the derivative in the direction ηj=fj−E.Rj|Xj/+
λvj ∈Hj , implying that

E[{fj.xj/−E.Rj|Xj=xj/+λvj.xj/}2]=0, .56/

i.e.

fj+λvj=E.Rj|Xj/ almost everywhere. .57/

Denote the conditional expectation E.Rj|Xj/—also the projection of the residual Rj onto Hj—by Pj .
Now, if E.f 2

j / �=0, then vj=fj=
√

E.f 2
j /, which from condition (57) implies
√

E.P2
j /=√E[{fj+λfj=

√
E.f 2

j /}2] .58/

=
{

1+ λ√
E.f 2

j /

}√
E.f 2

j / .59/

=√E.f 2
j /+λ .60/

�λ: .61/

If E.f 2
j /=0, then fj=0 almost everywhere, and

√
E.v2

j /�1. Equation (57) then implies that
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√

E.P2
j /�λ: .62/

We thus obtain the equivalence
√

E.P2
j /�λ⇔fj=0 almost everywhere. .63/

Rewriting equation (57) in light of result (63), we obtain{
1+ λ√

E.f 2
j /

}
fj=Pj if

√
E.P2

j />λ,

fj=0 otherwise:

Using equation (60), we thus arrive at the soft thresholding update for fj :

fj=
[

1− λ√
E.P2

j /

]
+

Pj .64/

where [·]+ denotes the positive part and Pj=E[Rj|Xj ].

A.2. Proof of theorem 2
A vector β̂ ∈Rdnp is an optimum of the objective function in expression (34) if and only if there is a
subgradient ĝ∈ @Ω.β̂/, such that

1
n

ΨT
(∑

j

Ψjβ̂j−Y
)
+λnĝ=0: .65/

The subdifferential @Ω.β/ is the set of vectors g∈Rpdn satisfying

gj=
.1=n/ΨT

j Ψjβj√{.1=n/βT
j ΨT

j Ψjβj}
if βj �=0,

gT
j

(
1
n

ΨT
j Ψj

)−1

gj �1 if βj=0:

Our argument is based on the technique of a primal dual witness, which has been used previously in
the analysis of the lasso (Wainwright, 2006). In particular, we construct a coefficient subgradient pair
.β̂, ĝ/ which satisfies supp.β̂/= supp.βÅ/ and in addition satisfies the optimality conditions for the objec-
tive (34) with high probability. Thus, when the procedure succeeds, the constructed coefficient vector β̂
is equal to the solution of the convex objective (34), and ĝ is an optimal solution to its dual. From its
construction, the support of β̂ is equal to the true support supp.βÅ/, from which we can conclude that
the solution of the objective (34) is sparsistent. The construction of the primal dual witness proceeds as
follows.

(a) Set β̂Sc =0.
(b) Set ĝS= @Ω.βÅ/S .
(c) With these settings of β̂Sc and ĝS , obtain β̂S and ĝSc from the stationary conditions in equation (65).

For the witness procedure to succeed, we must show that .β̂, ĝ/ is optimal for the objective (34), meaning
that

β̂j �=0 for j∈S, .66a/

gT
j

(
1
n

ΨT
j Ψj

)−1

gj < 1 for j∈Sc: .66b/

For uniqueness of the solution, we require strict dual feasibility, meaning strict inequality in condition
(66b). In what follows, we show that these two conditions hold with high probability.
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A.2.1. Condition (66a)
Setting β̂Sc =0 and

ĝj=
.1=n/ΨT

j Ψjβ
Å
j√{.1=n/βÅT

j ΨT
j Ψjβ

Å
j }

for j∈S,

the stationarity condition for β̂S is given by

1
n

ΨT
S .ΨS β̂S−Y/+λnĝS=0: .67/

Let V = Y −ΨSβ
Å
S −W denote the error due to finite truncation of the orthogonal basis, where W =

."1, . . . , "n/T. Then the stationarity condition (67) can be simplified as

1
n

ΨT
S ΨS.β̂S−βÅ

S /− 1
n

ΨT
S W − 1

n
ΨT

S V +λnĝS=0,

so that

β̂S−βÅ
S =

(
1
n

ΨT
S ΨS

)−1 (
1
n

ΨT
S W + 1

n
ΨT

S V −λnĝS

)
, .68/

where we have used the assumption that .1=n/ΨT
S ΨS is non-singular. Recalling our definition of the mini-

mum function norm ρÅ
n =minj∈S ‖βÅ

j ‖∞> 0, it suffices to show that ‖β̂S−βÅ
S ‖∞<ρÅ

n =2, to ensure that

supp.βÅ
S /= supp.β̂S/={j :‖β̂j‖∞ �=0},

so that condition (66a) would be satisfied. Using ΣSS= .1=n/.ΨT
S ΨS/ to simplify the notation, we have the

l∞-bound,

‖β̂S−βÅ
S ‖∞�

∥∥∥∥Σ−1
SS

(
1
n

ΨT
S W

)∥∥∥∥
∞︸ ︷︷ ︸

T1

+
∥∥∥∥Σ−1

SS

(
1
n

ΨT
S V

)∥∥∥∥
∞︸ ︷︷ ︸

T2

+λn ‖Σ−1
SS ĝS‖∞︸ ︷︷ ︸

T3

: .69/

We now proceed to bound the quantities T1, T2 and T3.

A.2.2. Bounding T3

Note that, for j∈S,

1=gT
j

(
1
n

ΨT
j Ψj

)−1

gj � 1
Cmax
‖gj‖2,

and thus |gj‖�√Cmax. Noting further that

‖gS‖∞=max
j∈S

.‖gj‖∞/�max
j∈S

.‖gj‖2/�√Cmax, .70/

it follows that

T3 :=‖Σ−1
SS ĝS‖∞�√Cmax‖Σ−1

SS ‖∞: .71/

A.2.3. Bounding T2

We proceed in two steps; we first bound ‖V‖∞ and use this to bound ‖.1=n/ΨT
S V‖∞. Note that, as we are

working over the Sobolev spaces Sj of order 2,

|Vi|=
∣∣∣∣∑

j∈S

∞∑
k=dn+1

βÅ
jk Ψjk.Xij/

∣∣∣∣�B
∑
j∈S

∞∑
k=dn+1

|βÅ
jk|

=B
∑
j∈S

∞∑
k=dn+1

|βÅ
jk|k2

k2
�B

∑
j∈S

√( ∞∑
k=dn+1

βÅ2
jk k4

)√( ∞∑
k=dn+1

1
k4

)

� sBC

√( ∞∑
k=dn+1

1
k4

)
� sB′

d
3=2
n

,
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for some constant B′> 0. It follows that∣∣∣∣ 1
n

ΨT
jkV

∣∣∣∣�
∣∣∣∣ 1
n

∑
i

Ψjk.Xij/

∣∣∣∣‖V‖∞� Ds

d
3=2
n

, .72/

where D denotes a generic constant. Thus,

T2 :=
∥∥∥∥Σ−1

SS

(
1
n

ΨT
S V

)∥∥∥∥
∞

�‖Σ−1
SS ‖∞

Ds

d
3=2
n

: .73/

A.2.4. Bounding T1

Let Z=T1=Σ−1
SS .1=n/ΨT

S W . Note that W∼N.0,σ2I/, so that Z is Gaussian as well, with mean 0. Consider
its lth component, Zl= eT

l Z. Then E.Zl/=0, and

var.Zl/= σ
2

n
eT

l Σ−1
SS el �

σ2

Cminn
:

By Gaussian comparison results (Ledoux and Talagrand, 1991), we have then that

E.‖Z‖∞/�3
√{log.sdn/‖var.Z/‖∞}�3σ

√{
log.sdn/

nCmin

}
: .74/

Substituting the bounds for T2 and T3 from equations (73) and (71) respectively into equation (69),
and using the bound for the expected value of T1 from inequality (74), it follows from an application of
Markov’s inequality that

P

(
‖β̂S−βÅ

S ‖∞>
ρÅ

n

2

)
�P

{
‖Z‖∞+‖Σ−1

SS ‖∞.Dsd−3=2
n +λn

√
Cmax/>

ρÅ
n

2

}

� 2
ρÅ

n

{E.‖Z‖∞/+‖Σ−1
SS ‖∞.Dsd−3=2

n +λn

√
Cmax/}

� 2
ρÅ

n

[
3σ

√{
log.sdn/

nCmin

}
+‖Σ−1

SS ‖∞
(

Ds

d
3=2
n

+λn

√
Cmax

)]
,

which converges to 0 under the condition that

1
ρÅ

n

[√{
log.sdn/

n

}
+

∥∥∥∥
(

1
n

ΨT
S ΨS

)−1∥∥∥∥
∞

(
s

d
3=2
n

+λn

)]
→0: .75/

Noting that ∥∥∥∥
(

1
n

ΨT
S ΨS

)−1∥∥∥∥
∞

�
√

.sdn/

Cmin
, .76/

it follows that condition (75) holds when

1
ρÅ

n

[√{
log.sdn/

n

}
+ s3=2

dn

+λn

√
.sdn/

]
→0: .77/

But this is satisfied by assumption (40) in the theorem. We have thus shown that condition (66a) is satisfied
with probability converging to 1.

A.2.5. Condition (66b)
We now must consider the dual variables ĝSc . Recall that we have set β̂Sc =βÅ

Sc =0. The stationarity con-
dition for j∈Sc is thus given by

1
n

ΨT
j .ΨS β̂S−ΨSβ

Å
S −W −V/+λnĝj=0:
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It then follows from equation (68) that

ĝSc = 1
λn

{
1
n

ΨT
Sc ΨS.βÅ

S − β̂S/+ 1
n

ΨT
Sc .W +V/

}

= 1
λn

{
1
n

ΨT
Sc ΨS

(
1
n

ΨT
S ΨS

)−1(
λnĝS−

1
n

ΨT
S W − 1

n
ΨT

S V

)
+ 1

n
ΨT

Sc .W +V/

}
,

so

ĝSc = 1
λn

{
ΣScSΣ−1

SS

(
λnĝS−

1
n

ΨT
S W − 1

n
ΨT

S V

)
+ 1

n
ΨT

Sc .W +V/

}
: .78/

Condition (66b) requires that

gT
j

(
1
n

ΨT
j Ψj

)−1

gj < 1, .79/

for all j∈Sc. Since

gT
j

(
1
n

ΨT
j Ψj

)−1

gj � 1
Cmin
‖gj‖2 .80/

it suffices to show that maxj∈Sc ‖gj‖<
√

Cmin. From equation (78), we see that ĝj is Gaussian, with mean
μj as

μj=E.ĝj/=ΣjSΣ−1
SS

(
ĝS−

1
λn

1
n

ΨT
S V

)
− 1
λn

1
n

ΨT
j V:

This can be bounded as

‖μj‖�‖ΣjSΣ−1
SS ‖

(
‖ĝS‖+

1
λn

∥∥∥ 1
n

ΨT
S V

∥∥∥)
+ 1
λn

∥∥∥ 1
n

ΨT
j V

∥∥∥
=‖ΣjSΣ−1

SS ‖
{√

.sCmax/+ 1
λn

∥∥∥ 1
n

ΨT
S V

∥∥∥}
+ 1
λn

∥∥∥ 1
n

ΨT
j V

∥∥∥: .81/

Using the bound ‖ΨT
j V‖∞�Ds=d3=2

n from equation (72), we have

∥∥∥ 1
n

ΨT
j V

∥∥∥�√dn

∥∥∥ 1
n

ΨT
j V

∥∥∥
∞

� Ds

dn

,

and hence ∥∥∥ 1
n

ΨT
S V

∥∥∥�√s
∥∥∥ 1

n
ΨT

S V
∥∥∥
∞

� Ds3=2

dn

:

Substituting in the bound (81) on the mean μj ,

‖μj‖�‖ΣjSΣ−1
SS ‖

{√
.sCmax/+ Ds3=2

λndn

}
+ Ds

λndn

: .82/

Assumptions (37) and (38) of the theorem can be rewritten as

‖ΣjSΣ−1
SS ‖�

√(
Cmin

Cmax

)
1− δ√

s
for some δ> 0, .83/

s

λndn

→0: .84/



Sparse Additive Models 1027

Thus the bound on the mean becomes

‖μj‖�√Cmin.1− δ/+ 2Ds

λndn

<
√

Cmin,

for sufficiently large n. It therefore suffices, for condition (66b) to be satisfied, to show that

P

(
max
j∈Sc
‖ĝj−μj‖∞>

δ

2
√

dn

)
→0, .85/

since this implies that

‖ĝj‖�‖μj‖+‖ĝj−μj‖
�‖μj‖+√dn‖ĝj−μj‖∞
�√Cmin.1− δ/+ δ

2
+o.1/,

with probability approaching 1. To show result (85), we again appeal to Gaussian comparison results.
Define

Zj=ΨT
j .I−ΨS.ΨT

S ΨS/−1ΨT
S /

W

n
, .86/

for j∈Sc. Then Zj are zero-mean Gaussian random variables, and we need to show that

P

{
max
j∈Sc

(‖Zj‖∞
λn

)
� δ

2
√

dn

}
→∞: .87/

A calculation shows that E.Z2
jk/ �σ2=n. Therefore, we have by Markov’s inequality and Gaussian com-

parison that

P

{
max
j∈Sc

(‖Zj‖∞
λn

)
� δ

2
√

dn

}
� 2
√

dn

δλn

E.max
jk
|Zjk|/

� 2
√

dn

δλn

[3
√

log{.p− s/dn}max
jk

{√E.Z2
jk/}]

� 6σ
δλn

√[
dn log{.p− s/dn}

n

]
,

which converges to 0 given the assumption (39) of the theorem that

λ2
nn

dn log{.p− s/dn}
→∞:

Thus condition (66b) is also satisfied with probability converging to 1, which completes the proof.

A.3. Proof of proposition 1
For any index k we have that

‖f‖2
2=

∞∑
i=1
β2

i .88/

�‖β‖∞
∞∑

i=1
|βi| .89/

=‖β‖∞
k∑

i=1
|βi|+‖β‖∞

∞∑
i=k+1
|βi| .90/

�k‖β‖2
∞+‖β‖∞

∞∑
i=k+1

iν |βi|
iν

.91/
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�k‖β‖2
∞+‖β‖∞

√( ∞∑
i=1
β2

i i2ν

)√( ∞∑
i=k+1

1
i2ν

)
.92/

�k‖β‖2
∞+‖β‖∞C

√(
k1−2ν

2ν−1

)
, .93/

where the last inequality uses the bound

∞∑
i=k+1

i−2ν �
∫ ∞

k

x−2νdx= k1−2ν

2ν−1
: .94/

Let kÅ be the index that minimizes expression (93). Some calculus shows that kÅ satisfies

c1‖β‖−2=.2ν+1/
∞ �kÅ � c2‖β‖−2=.2ν+1/

∞ .95/

for some constants c1 and c2. Using the above expression in expression (93) then yields

‖f‖2
2 �‖β‖∞.c2‖β‖.2ν−1/=.2ν+1/

∞ + c′1‖β‖.2ν−1/=.2ν+1/
∞ / .96/

= c‖β‖4ν=.2ν+1/
∞ .97/

for some constant c, and the result follows.

A.4. Proof of theorem 3
We begin with some notation. If M is a class of functions then the L∞ bracketing number N[ ].", M/ is
defined as the smallest number of pairs B={.l1, u1/, . . . , .lk, uk/} such that ‖uj− lj‖∞� ", 1 � j � k, and
such that for every m∈M there exists .l, u/∈B such that l�m�u. For the Sobolev space Tj ,

log{N[ ].", Tj/}�K

(
1
"

)1=2

.98/

for some K> 0; see van der Vaart (1998). The bracketing integral is defined to be

J[ ].δ, M/=
∫ δ

0

√
log{N[ ].u, M/}du: .99/

From corollary 19.35 of van der Vaart (1998),

E

{
sup
g∈M
|μ̂.g/−μ.g/|

}
� C J[ ].‖F‖∞, M/√

n
.100/

for some C> 0, where F.x/= supg∈M |g.x/|,μ.g/=E{g.X/} and μ̂.g/=n−1Σn
i=1 g.Xi/.

Set Z≡ .Z0, . . . , Zp/= .Y , X1, . . . , Xp/ and note that

R.β, g/=
p∑

j=0

p∑
k=0

βjβk E{gj.Zj/gk.Zk/} .101/

where we define g0.z0/= z0 and β0=−1. Also define

R̂.β, g/= 1
n

n∑
i=1

p∑
j=0

p∑
k=0

βjβk gj.Zij/gk.Zik/: .102/

Hence m̂n is the minimizer of R̂.β, g/ subject to the constraint Σjβj gj.xj/∈Mn.Ln/ and gj ∈Tj . For all
.β, g/,

|R̂.β, g/−R.β, g/|�‖β‖2
1 max

jk
sup

gj∈Sj ,gk∈Sk

|μ̂jk.g/−μjk.g/| .103/

where

μ̂jk.g/=n−1
n∑

i=1

∑
jk

gj.Zij/gk.Zik/
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and μjk.g/=E{gj.Zj/gk.Zk/}. From inequality (98) it follows that

log{N[ ].", Mn/}�2 log.pn/+K

(
1
"

)1=2

: .104/

Hence, J[ ].C, Mn/=O{√log.pn/} and it follows from inequality (100) and Markov’s inequality that

max
jk

sup
gj∈Sj ,gk∈Sk

|μ̂jk.g/−μjk.g/|=OP

[√{
log.pn/

n

}]
=OP

(
1

n.1−ξ/=2

)
: .105/

We conclude that

sup
g∈M
|R̂.g/−R.g/|=OP

(
L2

n

n.1−ξ/=2

)
: .106/

Therefore,

R.mÅ/�R.m̂n/� R̂.m̂n/+OP

(
L2

n

n.1−ξ/=2

)

� R̂.mÅ/+OP

(
L2

n

n.1−ξ/=2

)
�R.mÅ/+OP

(
L2

n

n.1−ξ/=2

)
and the conclusion follows.
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