
Linear Classification
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In these notes we discuss parametric classification, in particular, linear classification, from
several different points of view. We begin with a review of classification.

1 Review of Classification

The problem of predicting a discrete random variable Y from another random variable X
is called classification, also sometimes called discrimination, pattern classification or pat-
tern recognition. We observe iid data (X1, Y1), . . . , (Xn, Yn) ∼ P where Xi ∈ Rd and
Yi ∈ {0, 1, . . . , K − 1}. Often, the covariates X are also called features. The goal is to
predict Y given a new X; here are some examples:

1. The Iris Flower study. The data are 50 samples from each of three species of Iris
flowers, Iris setosa, Iris virginica and Iris versicolor; see Figure 1. The length and
width of the sepal and petal are measured for each specimen, and the task is to predict
the species of a new Iris flower based on these features.

2. The Coronary Risk-Factor Study (CORIS). The data consist of attributes of 462 males
between the ages of 15 and 64 from three rural areas in South Africa. The outcome Y
is the presence (Y = 1) or absence (Y = 0) of coronary heart disease and there are 9
covariates: systolic blood pressure, cumulative tobacco (kg), ldl (low density lipopro-
tein cholesterol), adiposity, famhist (family history of heart disease), typea (type-A
behavior), obesity, alcohol (current alcohol consumption), and age. The goal is to
predict Y from all these covariates.

3. Handwriting Digit Recognition. Here each Y is one of the ten digits from 0 to 9. There
are 256 covariates X1, . . . , X256 corresponding to the intensity values of the pixels in a
16× 16 image; see Figure 2.

4. Political Blog Classification. A collection of 403 political blogs were collected during
two months before the 2004 presidential election. The goal is to predict whether a blog
is liberal (Y = 0) or conservative (Y = 1) given the content of the blog.

A classification rule, or classifier, is a function h : X → {0, . . . , K−1} where X is the domain
of X. When we observe a new X, we predict Y to be h(X). Intuitively, the classification rule
h partitions the input space X into K disjoint decision regions whose boundaries are called
decision boundaries. In these notes, we consider linear classifiers whose decision boundaries
are linear functions of the covariate X. For K = 2, we have a binary classification problem.
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Figure 1: Three different species of the Iris data. Iris setosa (Left), Iris versicolor (Middle),
and Iris virginica (Right).

For K > 2, we have a multiclass classification problem. To simplify the discussion, we mainly
discuss binary classification, and briefly explain how methods can extend to the multiclass
case.

A binary classifier h is a function from X to {0, 1}. It is linear if there exists a function
H(x) = β0 + βTx such that h(x) = I(H(x) > 0). H(x) is also called a linear discriminant
function. The decision boundary is therefore defined as the set

{
x ∈ Rd : H(x) = 0

}
, which

corresponds to a (d− 1)-dimensional hyperplane within the d-dimensional input space X .

The classification risk, or error rate, of h is defined as

R(h) = P
(
Y 6= h(X)

)
(1)

and the empirical classification error or training error is

R̂(h) =
1

n

n∑
i=1

I
(
h(Xi) 6= Yi

)
. (2)

Here is some notation that we will use.

X covariate (feature)
X domain of X, usually X ⊂ Rd

Y response (pattern)
h binary classifier, h : X → {0, 1}
H linear discriminant function, H(x) = β0 + βTx and h(x) = I

(
H(x) > 0

)
m regression function, m(x) = E(Y |X = x) = P(Y = 1|X = x)
PX marginal distribution of X
pj pj(x) = p(x|Y = j), the conditional density1 of X given that Y = j
π1 π1 = P(Y = 1)
P joint distribution of (X, Y )

Now we review some key results.

2



Figure 2: Examples from the zipcode data.

Theorem 1 The rule h that minimizes R(h) is

h∗(x) =

{
1 if m(x) > 1

2

0 otherwise
(3)

where m(x) = E(Y |X = x) = P(Y = 1|X = x) denotes the regression function.

The rule h∗ is called the Bayes rule. The risk R∗ = R(h∗) of the Bayes rule is called the
Bayes risk. The set {x ∈ X : m(x) = 1/2} is called the Bayes decision boundary.

Proof. We will show that R(h)−R(h∗) ≥ 0. Note that

R(h) = P
(
{Y 6= h(X)}

)
=

∫
P
(
Y 6= h(X)|X = x

)
dPX(x).

It suffices to show that

P
(
Y 6= h(X)|X = x

)
− P

(
Y 6= h∗(X)|X = x

)
≥ 0 for all x ∈ X . (4)

Now,

P
(
Y 6= h(X)|X = x

)
= 1− P

(
Y = h(X)|X = x

)
(5)

= 1−
(
P
(
Y = 1, h(X) = 1|X = x

)
+ P

(
Y = 0, h(X) = 0|X = x

))
(6)

= 1−
(
h(x)P(Y = 1|X = x) +

(
1− h(x)

)
P(Y = 0|X = x)

)
(7)

= 1−
(
h(x)m(x) +

(
1− h(x)

)(
1−m(x)

))
. (8)
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Hence,

P
(
Y 6= h(X)|X = x

)
− P

(
Y 6= h∗(X)|X = x

)
=

(
h∗(x)m(x) +

(
1− h∗(x)

)(
1−m(x)

))
−
(
h(x)m(x) +

(
1− h(x)

)(
1−m(x)

))
=

(
2m(x)− 1

)(
h∗(x)− h(x)

)
= 2

(
m(x)− 1

2

)(
h∗(x)− h(x)

)
. (9)

When m(x) ≥ 1/2 and h∗(x) = 1, (9) is non-negative. When m(x) < 1/2 and h∗(x) = 0, (9)
is again non-negative. This proves (4). �

We can rewrite h∗ in a different way. From Bayes’ theorem

m(x) = P(Y = 1|X = x) =
p(x|Y = 1)P(Y = 1)

p(x|Y = 1)P(Y = 1) + p(x|Y = 0)P(Y = 0)

=
π1p1(x)

π1p1(x) + (1− π1)p0(x)
. (10)

where π1 = P(Y = 1). From the above equality, we have that

m(x) >
1

2
is equivalent to

p1(x)

p0(x)
>

1− π1

π1

. (11)

Thus the Bayes rule can be rewritten as

h∗(x) =

{
1 if p1(x)

p0(x)
> 1−π1

π1

0 otherwise.
(12)

IfH is a set of classifiers then the classifier ho ∈ H that minimizes R(h) is the oracle classifier.
Formally,

R(ho) = inf
h∈H

R(h)

and Ro = R(ho) is called the oracle risk of H. In general, if h is any classifier and R∗ is the
Bayes risk then,

R(h)−R∗ = R(h)−R(ho)︸ ︷︷ ︸
distance from oracle

+ R(ho)−R∗.︸ ︷︷ ︸
distance of oracle from Bayes error

(13)

The first term is analogous to the variance, and the second is analogous to the squared bias
in linear regression.

For a binary classifier problem, given a covariate X we only need to predict its class label
Y = 0 or Y = 1. This is in contrast to a regression problem where we need to predict a
real-valued response Y ∈ R. Intuitively, classification is a much easier task than regression.
To rigorously formalize this, let m∗(x) = E(Y |X = x) be the true regression function and
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let h∗(x) be the corresponding Bayes rule. Let m̂(x) be an estimate of m∗(x) and define the
plug-in classification rule:

ĥ(x) =

{
1 if m̂(x) > 1

2

0 otherwise.
(14)

We have the following theorem.

Theorem 2 The risk of the plug-in classifier rule in (14) satisfies

R(ĥ)−R∗ ≤ 2

√∫
(m̂(x)−m∗(x))2dPX(x).

Proof. In the proof of Theorem 1 we showed that

P
(
Y 6= ĥ(X)|X = x

)
− P

(
Y 6= h∗(X)|X = x

)
=
(
2m̂(x)− 1

)(
h∗(x)− ĥ(x)

)
=

∣∣2m̂(x)− 1
∣∣I(h∗(x) 6= ĥ(x)

)
= 2
∣∣m̂(x)− 1/2

∣∣I(h∗(x) 6= ĥ(x)
)
.

Now, when h∗(x) 6= ĥ(x), there are two possible cases: (i) ĥ(x) = 1 and h∗(x) = 0; (ii)

ĥ(x) = 0 and h∗(x) = 1. In both cases, we have that
∣∣m̂(x) − m∗(x)

∣∣ ≥ ∣∣m̂(x) − 1/2
∣∣.

Therefore,

P
(
ĥ(X) 6= Y

)
− P

(
h∗(X) 6= Y

)
= 2

∫ ∣∣m̂(x)− 1/2
∣∣I(h∗(x) 6= ĥ(x)

)
dPX(x)

≤ 2

∫ ∣∣m̂(x)−m∗(x)
∣∣I(h∗(x) 6= ĥ(x)

)
dPX(x)

≤ 2

∫ ∣∣m̂(x)−m∗(x)
∣∣dPX(x) (15)

≤ 2

√∫ (
m̂(x)−m∗(x)

)2
dPX(x). (16)

The last inequality follows from the fact that E|Z| ≤
√
EZ2 for any Z. �

This theorem implies that if the regression estimate m̂(x) is close to m∗(x) then the plug-in
classification risk will be close to the Bayes risk. The converse is not necessarily true. It is
possible for m̂ to be far from m∗(x) and still lead to a good classifier. As long as m̂(x) and
m∗(x) are on the same side of 1/2 they yield the same classifier.

Example 3 Figure 3 shows two one-dimensional regression functions. In both cases, the
Bayes rule is h∗(x) = I(x > 0) and the decision boundary is D = {x = 0}. The left plot
illustrates an easy problem; there is little ambiguity around the decision boundary. Even a
poor estimate of m(x) will recover the correct decision boundary. The right plot illustrates a
hard problem; it is hard to know from the data if you are to the left or right of the decision
boundary.
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Figure 3: The Bayes rule is h∗(x) = I(x > 0) in both plots, which show the regression
function m(x) = E(Y |x) for two problems. The left plot shows an easy problem; there is
little ambiguity around the decision boundary. The right plot shows a hard problem; it is
hard to know from the data if you are to the left or right of the decision boundary.

So classification is easier than regression. Can it be strictly easier? Suppose that R(m̂)→ 0.
We have that

R(ĥ)−R(h∗) ≤ 2

∫
|m̂(x)−m∗(x)|I(h∗(x) 6= ĥ(x))dP (x)

= 2

∫
|m̂(x)−m∗(x)|I(h∗(x) 6= ĥ(x))I(m∗(x) 6= 1/2)dP (x)

= 2E
[
|m̂(X)−m∗(X)|I(h∗(X) 6= ĥ(X))I(m∗(X) 6= 1/2)

]
≤ 2E

[
|m̂(X)−m∗(X)|I(h∗(X) 6= ĥ(X))I(|m∗(X)− 1/2| ≤ ε,m∗(X) 6= 1/2)

]
+ 2E

[
|m̂(X)−m∗(X)|I(h∗(X) 6= ĥ(X))I(|m∗(X)− 1/2| > ε)

]
≤ 2
√
R(m̂)(a1/2 + b1/2)

where
a = P (h∗(X) 6= ĥ(X), |m∗(X)− 1/2| ≤ ε,m∗(X) 6= 1/2)

and
b = P (h∗(X) 6= ĥ(X), |m∗(X)− 1/2| > ε).

Now

b ≤ P (|m̂(X)−m∗(X)| > ε) ≤ R(m̂)

ε2
→ 0

so

lim
n→∞

R(ĥ)−R(h∗)√
R(m̂)

≤ 2a1/2.

But a→ 0 as ε→ 0 so So
R(ĥ)−R(h∗)√

R(m̂)
→ 0.
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So the LHS can be smaller than the right hand side. But how much smaller? Yang (1999)
showed that if the class of regression functions is sufficiently rich, then

inf
m̂

sup
m∈M

R(ĥ) � r2
n and inf

ĥ
sup
m∈M

[R(ĥ)−R(h∗)] � rn

which says that the minimax classification rate is the square root of the regression rate.

But, there are natural classes that fail the richness condition such as low noise classes. For

example, if P (|m∗(X)−1/2| ≤ ε) = 0 and m̂ satifies an exponential inequality then R(ĥ)−R(h∗)√
R(m̂)

is exponentially small. So it really depends on the problem.

2 Empirical Risk Minimization

The conceptually simplest approach is empirical risk minimization (ERM) where we minimize
the training error over all linear classifiers. Let Hβ(x) = βTx (where x(1) = 1) and hβ(x) =

I(Hβ(x) > 0). Thus we define β̂ to be the value of β that minimizes

R̂n(β) =
1

n

n∑
i=1

I(Yi 6= hβ(Xi)).

The problem with this approach is that it is difficult to minimize R̂n(β). The theory for the
ERM is straightforward. First, let us recall the following. Let H be a set of clasifiers and let
h∗ = argminh∈HR(h). Let ĥ minimize the empirical risk. If suph∈H |R̂(h)− R(h)| ≤ ε then

R(ĥ) ≤ R(h∗) + 2ε. To see this, note that if if suph∈H |R̂(h)−R(h)| ≤ ε then, using the fact

that ĥ minimizes R̂,

R(h∗) ≤ R(ĥ) ≤ R̂(ĥ) + ε ≤ R̂(h∗) + ε ≤ R(h∗) + 2ε.

So we need to bound
P (sup

h∈H
|R̂(h)−R(h)| ≤ ε).

If H has finite VC dimension r then

P (sup
h∈H
|R̂(h)−R(h)| ≤ ε) ≤ 8(n+ 1)re−nε

2/32.

Now hald-spaces have VC dimension r = d+ 1. So

P (sup
h∈H
|R̂(h)−R(h)| ≤ ε) ≤ 8(n+ 1)d+1e−nε

2/32.

We conclude that P (R(ĥ)−R(h∗) > 2ε) ≤ 8nd+1e−nε
2/32.
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The result can be improved if there are not too many data points near the decision boundary.
We’ll state a result due to Koltchinski and Panchenko (2002) that involves the margin. (See
also Kakade, Sridharan and Tewari 2009). Let us take Yi ∈ {−1,+1} so we can write
h(x) = sign(βTx). Suppose that |X(j)| ≤ A < ∞ for each j. We also restrict ourselved to
the set of linear classifiers h(x) = sign(βTx) with |β(j)| ≤ A. Define the margin-sensitive
loss

φγ(u) =


1 if u ≤ 0

1− u
γ

if 0 < u ≤ γ

0 if u > γ.

Then, for any such classifier h, with probability at least 1− δ,

P (Y 6= h(X)) ≤ 1

n

n∑
i=1

φγ(Yih(Xi)) +
4A3/2d

γn
+

(
8

γ
+ 1

)√
log(4/δ)

2n
.

This means that, if there are few observations near the boundary, then, by taking γ large,
we can make the loss small. However, the restriction to bounded covariates and bounded
classifiers is non-trivial.

3 Gaussian Discriminant Analysis

Suppose that p0(x) = p(x|Y = 0) and p1(x) = p(x|Y = 1) are both multivariate Gaussians:

pk(x) =
1

(2π)d/2|Σk|1/2
exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)
}
, k = 0, 1.

where Σ1 and Σ2 are both d × d covariance matrices. Thus, X|Y = 0 ∼ N(µ0,Σ0) and
X|Y = 1 ∼ N(µ1,Σ1).

Given a square matrix A, we define |A| to be the determinant of A. For a binary classification
problem with Gaussian distributions, we have the following theorem.

Theorem 4 If X|Y = 0 ∼ N(µ0,Σ0) and X|Y = 1 ∼ N(µ1,Σ1), then the Bayes rule is

h∗(x) =

{
1 if r2

1 < r2
0 + 2 log

(
π1

1−π1

)
+ log

(
|Σ0|
|Σ1|

)
0 otherwise

(17)

where r2
i = (x− µi)TΣ−1

i (x− µi) for i = 1, 2 is the Mahalanobis distance.

Proof. By definition, the Bayes rule is h∗(x) = I
(
π1p1(x) > (1 − π1)p0(x)

)
. Plug-in the

specific forms of p0 and p1 and take the logarithms we get h∗(x) = 1 if and only if

(x− µ1)TΣ−1
1 (x− µ1)− 2 log π1 + log

(
|Σ1|

)
< (x− µ0)TΣ−1

0 (x− µ0)− 2 log(1− π1) + log
(
|Σ0|

)
. (18)
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The theorem immediately follows from some simple algebra. �

Let π0 = 1− π1. An equivalent way of expressing the Bayes rule is

h∗(x) = argmaxk∈{0,1}δk(x) (19)

where

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) + log πk (20)

is called the Gaussian discriminant function. The decision boundary of the above classifier
can be characterized by the set {x ∈ X : δ1(x) = δ0(x)}, which is quadratic so this procedure
is called quadratic discriminant analysis (QDA).

In practice, we use sample quantities of π0, π1, µ1, µ2,Σ0,Σ1 in place of their population
values, namely

π̂0 =
1

n

n∑
i=1

(1− Yi), π̂1 =
1

n

n∑
i=1

Yi, (21)

µ̂0 =
1

n0

∑
i: Yi=0

Xi, µ̂1 =
1

n1

∑
i: Yi=1

Xi, (22)

Σ̂0 =
1

n0 − 1

∑
i: Yi=0

(Xi − µ̂0)(Xi − µ̂0)T , (23)

Σ̂1 =
1

n1 − 1

∑
i: Yi=1

(Xi − µ̂1)(Xi − µ̂1)T , (24)

where n0 =
∑

i(1−Yi) and n1 =
∑

i Yi. (Note: we could also estimate Σ0 and Σ1 using their
maximum likelihood estimates, which replace n0 − 1 and n1 − 1 with n0 and n1.)

A simplification occurs if we assume that Σ0 = Σ1 = Σ. In this case, the Bayes rule is

h∗(x) = argmaxkδk(x) (25)

where now

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk. (26)

Hence, the classifier is linear. The parameters are estimated as before, except that we use a
pooled estimate of the Σ:

Σ̂ =
(n0 − 1)Σ̂0 + (n1 − 1)Σ̂1

n0 + n1 − 2
. (27)

The classification rule is

h∗(x) =

{
1 if δ1(x) > δ0(x)

0 otherwise.
(28)
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The decision boundary {x ∈ X : δ0(x) = δ1(x)} is linear so this method is called linear
discrimination analysis (LDA).

When the dimension d is large, fully specifying the QDA decision boundary requires d +
d(d− 1) parameters, and fully specifying the LDA decision boundary requires d+ d(d− 1)/2
parameters. Such a large number of free parameters might induce a large variance. To further
regularize the model, two popular methods are diagonal quadratic discriminant analysis
(DQDA) and diagonal linear discriminant analysis (DLDA). The only difference between

DQDA and DLDA with QDA and LDA is that after calculating Σ̂1 and Σ̂0 as in (24), we
set all the off-diagonal elements to be zero. This is also called the independence rule.

We now generalize to the case where Y takes on more than two values. That is, Y ∈
{0, . . . , K − 1} for K > 2. First, we characterize the Bayes classifier under this multiclass
setting.

Theorem 5 Let R(h) = P (h(X) 6= Y ) be the classification error of a classification rule
h(x). The Bayes rule h∗(X) minimizing R(h) can be written as

h∗(x) = argmaxkP (Y = k|X = x) (29)

Proof. We have

R(h) = 1− P (h(X) = Y ) (30)

= 1−
K−1∑
k=0

P (h(X) = k, Y = k) (31)

= 1−
K−1∑
k=0

E
[
I
(
h(X) = k

)
P (Y = k|X)

]
(32)

It’s clear that h∗(X) = argmaxk P (Y = k|X) achieves the minimized classification error
1− E

[
maxk P (Y = k|X)

]
. �

Let πk = P(Y = k). The next theorem extends QDA and LDA to the multiclass setting.

Theorem 6 Suppose that Y ∈ {0, . . . , K − 1} with K ≥ 2. If pk(x) = p(x|Y = k) is
Gaussian : X|Y = k ∼ N

(
µk,Σk

)
, the Bayes rule for the multiclass QDA can be written as

h∗(x) = argmaxkδk(x)

where

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) + log πk. (33)

If all Gaussians have an equal variance Σ, then

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk. (34)
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Let nk =
∑

i I(yi = k) for k = 0, . . . , K − 1. The estimated sample quantities of πk, µk, Σk,
and Σ are:

π̂k =
1

n

n∑
i=1

I(yi = k), µ̂k =
1

nk

∑
i: Yi=k

Xi, (35)

Σ̂k =
1

nk − 1

∑
i: Yi=k

(Xi − µ̂k)(Xi − µ̂k)T , (36)

Σ̂ =

∑K−1
k=0 (nk − 1)Σ̂k

n−K
. (37)

Example 7 Let us return to the Iris data example. Recall that there are 150 observations
made on three classes of the iris flower: Iris setosa, Iris versicolor, and Iris virginica. There
are four features: sepal length, sepal width, petal length, and petal width. In Figure 4 we
visualize the datasets. Within each class, we plot the densities for each feature. It’s easy to
see that the distributions of petal length and petal width are quite different across different
classes, which suggests that they are very informative features.

Figures 5 and 6 provide multiple figure arrays illustrating the classification of observations
based on LDA and QDA for every combination of two features. The classification boundaries
and error are obtained by simply restricting the data to these a given pair of features before
fitting the model. We see that the decision boundaries for LDA are linear, while the decision
boundaries for QDA are highly nonlinear. The training errors for LDA and QDA on this data
are both 0.02. From these figures, we see that it is very easy to discriminate the observations
of class Iris setosa from those of the other two classes.
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Figure 4: The Iris data: The estimated densities for different features are plotted within
each class. It’s easy to see that the distributions of petal length and petal width are quite
different across different classes, which suggests that they are very informative features.
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Figure 5: Classifying the Iris data using LDA. The multiple figure array illustrates the
classification of observations based on LDA for every combination of two features. The
classification boundaries and error are obtained by simply restricting the data to a given
pair of features before fitting the model. In these plots, “s” represents the class label Iris
setosa, “e” represents the class label Iris versicolor, and “v” represents the class label Iris
virginica. The red letters illustrate the misclassified observations.
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Figure 6: Classifying the Iris data using QDA. The multiple figure array illustrates the
classification of observations based on QDA for every combination of two features. The
classification boundaries are displayed and the classification error by simply casting the data
onto these two features are calculated. In these plots, “s” represents the class label Iris
setosa, “e” represents the class label Iris versicolor, and “v” represents the class label Iris
virginica. The red letters illustrate the misclassified observations.
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4 Fisher Linear Discriminant Analysis

There is another version of linear discriminant analysis due to Fisher (1936). The idea is to
first reduce the covariates to one dimension by projecting the data onto a line. Algebraically,
this means replacing the covariate X = (X1, . . . , Xd)

T with a linear combination U = wTX =∑d
j=1 wjXj. The goal is to choose the vector w = (w1, . . . , wd)

T that “best separates the
data into two groups.” Then we perform classification with the one-dimensional covariate U
instead of X.

What do we mean by “best separates the data into two groups”? Formally, we would like
the two groups to have means that as far apart as possible relative to their spread. Let
µj denote the mean of X for Y = j, j = 0, 1. And let Σ be the covariance matrix of X.
Then, for j = 0, 1, E(U |Y = j) = E(wTX|Y = j) = wTµj and Var(U) = wTΣw. Define the
separation by

J(w) =

(
E(U |Y = 0)− E(U |Y = 1)

)2

wTΣw

=
(wTµ0 − wTµ1)2

wTΣw

=
wT (µ0 − µ1)(µ0 − µ1)Tw

wTΣw
.

J is sometimes called the Rayleigh coefficient. Our goal is to find w that maximizes J(w).
Since J(w) involves unknown population quantities Σ0,Σ1, µ0, µ1, we estimate J as follows.
Let nj =

∑n
i=1 I(Yi = j) be the number of observations in class j, let µ̂j be the sample mean

vector of the X’s for class j, and let Σj be the sample covariance matrix for all observations
in class j. Define

Ĵ(w) =
wTSBw

wTSWw
(38)

where

SB = (µ̂0 − µ̂1)(µ̂0 − µ̂1)T ,

SW =
(n0 − 1)S0 + (n1 − 1)S1

(n0 − 1) + (n1 − 1)
.

Theorem 8 The vector
ŵ = S−1

W (µ̂0 − µ̂1) (39)

is a maximizer of Ĵ(w).

Proof. Maximizing Ĵ(w) is equivalent to maximizing wTSBw subject to the constraint that
wTSWw = 1. This is a generalized eigenvalue problem. By the definition of eigenvector and
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eigenvalue, the maximizer ŵ should be the eigenvector of S−1
W SB corresponding to the largest

eigenvalue. The key observation is that SB = (µ̂0− µ̂1)(µ̂0− µ̂1)T , which implies that for any
vector w, SBw must be in the direction of µ̂0 − µ̂1. The desired result immediately follows.
�

We call
f(x) = ŵTx = (µ̂0 − µ̂1)TS−1

W x (40)

the Fisher linear discriminant function. Given a cutting threshold cm ∈ R, Fisher’s classifi-
cation rule is

h(x) =

{
0 if ŵTx ≥ cm
1 if ŵTx < cm.

(41)

Fisher’s rule is the same as the Gaussian LDA rule in (26) when

cm =
1

2
(µ̂0 − µ̂1)TS−1

W (µ̂0 + µ̂1)− log

(
π̂0

π̂1

)
. (42)

5 Logistic Regression

One approach to binary classification is to estimate the regression function m(x) = E(Y |X =
x) = P(Y = 1|X = x) and, once we have an estimate m̂(x), use the classification rule

ĥ(x) =

{
1 if m̂(x) > 1

2

0 otherwise.
(43)

For binary classification problems, one possible choice is the linear regression model

Y = m(X) + ε = β0 +
d∑
j=1

βjXj + ε. (44)

The linear regression model does not explicitly constrain Y to take on binary values. A
more natural alternative is to use logistic regression, which is the most common binary
classification method.

Before we describe the logistic regression model, let’s recall some basic facts about binary
random variables. If Y takes values 0 and 1, we say that Y has a Bernoulli distribution with
parameter π1 = P(Y = 1). The probability mass function for Y is p(y; π1) = πy1(1 − π1)1−y

for y = 0, 1. The likelihood function for π1 based on iid data Y1, . . . , Yn is

L(π1) =
n∏
i=1

p(Yi; π1) =
n∏
i=1

πYi1 (1− π1)1−Yi . (45)
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In the logistic regression model, we assume that

m(x) = P(Y = 1|X = x) =
exp
(
β0 + xTβ

)
1 + exp

(
β0 + xTβ

) ≡ π1(x, β0, β). (46)

In other words, given X = x, Y is Bernoulli with mean π1(x, β0, β). We can write the model
as

logit
(
P(Y = 1|X = x)

)
= β0 + xTβ (47)

where logit(a) = log(a/(1 − a)). The name “logistic regression” comes from the fact that
exp(x)/(1 + exp(x)) is called the logistic function.

Lemma 9 Both linear regression and logistic regression models have linear decision bound-
aries.

Proof. The linear decision boundary for linear regression is straightforward. The same
result for logistic regression follows from the monotonicity of the logistic function. �

The parameters β0 and β = (β1, . . . , βd)
T can be estimated by maximum conditional likeli-

hood. The conditional likelihood function for β is

L(β0, β) =
n∏
i=1

π(xi, β0, β)Yi(1− π(xi, β0, β))1−Yi .

Thus the conditional log-likelihood is

`(β0, β) =
n∑
i=1

{
Yi log π(xi, β0, β)− (1− yi) log(1− π(xi, β0, β)

}
(48)

=
n∑
i=1

{
Yi(β0 + xTi β)− log

(
1 + exp(β0 + xTi β)

)}
. (49)

The maximum conditional likelihood estimators β̂0 and β̂ cannot be found in closed form.
However, the loglikelihood function is concave and can be efficiently solve by the Newton’s
method in an iterative manner as follows.

Note that the logistic regression classifier is essentially replacing the 0-1 loss with a smooth
loss function. In other words, it uses a surrogate loss function.

For notational simplicity, we redefine (local to this section) the d-dimensional covariate xi
and parameter vector β as the following (d+ 1)-dimensional vectors:

xi ← (1, xTi )T and β ← (β0, β
T )T . (50)

Thus, we write π1(x, β0, β) as π1(x, β) and `(β0, β) as `(β).
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To maximize `(β), the (k + 1)th Newton step in the algorithm replaces the kth iterate β̂(k)

by

β̂(k+1) ← β̂(k) −

(
∂2`(β̂(k))

∂β∂βT

)−1
∂`(β̂(k))

∂β
. (51)

The gradient ∂s∂`(β̂
(k))

∂β
and Hessian ∂s∂

2`(β̂(k))
∂β∂βT are both evaluated at β̂(k) and can be written

as
∂`(β̂(k))

∂β
=

n∑
i=1

(π(xi, β̂
(k))− Yi)Xi and

∂2`(β̂(k))

∂β∂βT
= −XTWX (52)

where W = diag(w
(k)
11 , w

(k)
22 , . . . , w

(k)
dd ) is a diagonal matrix with

w
(k)
ii = π(xi, β̂

(k))
(
1− π(xi, β̂

(k))
)
. (53)

Let π
(k)
1 =

(
π1(x1, β̂

(k)), . . . , π1(xn, β̂
(k))
)T

, (51) can be written as

β̂(k+1) = β̂(k) + (XTWX)−1XT (y − π(k)
1 ) (54)

= (XTWX)−1XTW
(
Xβ̂(k) + W−1(y − π(k)

1 )
)

(55)

= (XTWX)−1XTWz(k) (56)

where z(k) ≡ (z
(k)
1 , . . . , z

(k)
n )T = XT β̂(k) + W−1(y − π(k)

1 ) with

z
(k)
i = log

(
π1(xi, β̂

(k))

1− π1(xi, β̂(k))
+

yi − π1(xi, β̂
(k))

π1(xi, β̂(k))(1− π1(xi, β̂(k)))

)
. (57)

Given the current estimate β̂(k), the above Newton iteration forms a quadratic approximation
to the negative log-likelihood using Taylor expansion at β̂(k):

−`(β) =
1

2
(z − Xβ)TW(z − Xβ)︸ ︷︷ ︸

`Q(β)

+constant. (58)

The update equation (56) corresponds to solving a quadratic optimization

β̂(k+1) = argmin
β

`Q(β). (59)

We then get an iterative algorithm called iteratively reweighted least squares. See Figure 7.
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Iteratively Reweighted Least Squares Algorithm

Choose starting values β̂(0) = (β̂
(0)
0 , β̂

(0)
1 , . . . , β̂

(0)
d )T and compute π1(xi, β̂

(0)) using

Equation (46), for i = 1, . . . , n with βj replaced by its initial value β̂
(0)
j .

For k = 1, 2, . . ., iterate the following steps until convergence.

1. Calculate z
(k)
i according to (57) for i = 1, . . . , n.

2. Calculate β̂(k+1) according to (56). This corresponds to doing a weighted linear
regression of z on X.

3. Update the π(xi, β̂)’s using (46) with the current estimate of β̂(k+1).

Figure 7: Finding the Logistic Regression MLE.

We can get the estimated standard errors of the final solution β̂. For the kth iteration, recall
that the Fisher information matrix I(β̂(k)) takes the form

I(β̂(k)) = −E

(
∂2`(β̂(k))

∂β∂βT

)
≈ XTWX, (60)

we estimate the standard error of β̂j as the jth diagonal element of I(β̂)−1.

Example 10 We apply the logistic regression on the Coronary Risk-Factor Study (CORIS)
data and yields the following estimates and Wald statistics Wj for the coefficients:

Covariate β̂j se Wj p-value
Intercept -6.145 1.300 -4.738 0.000
sbp 0.007 0.006 1.138 0.255
tobacco 0.079 0.027 2.991 0.003
ldl 0.174 0.059 2.925 0.003
adiposity 0.019 0.029 0.637 0.524
famhist 0.925 0.227 4.078 0.000
typea 0.040 0.012 3.233 0.001
obesity -0.063 0.044 -1.427 0.153
alcohol 0.000 0.004 0.027 0.979
age 0.045 0.012 3.754 0.000
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6 Logistic Regression Versus LDA

There is a close connection between logistic regression and Gaussian LDA. Let (X, Y ) be a
pair of random variables where Y is binary and let p0(x) = p(x|Y = 0), p1(x) = p(x|Y = 1),
π1 = P(Y = 1). By Bayes’ theorem,

P(Y = 1|X = x) =
p(x|Y = 1)π1

p(x|Y = 1)π1 + p(x|Y = 0)(1− π1)
(61)

If we assume that each group is Gaussian with the same covariance matrix Σ, i.e., X|Y =
0 ∼ N(µ0,Σ) and X|Y = 1 ∼ N(µ1,Σ), we have

log

(
P(Y = 1|X = x)

P(Y = 0|X = x)

)
= log

(
π

1− π

)
− 1

2
(µ0 + µ1)TΣ−1(µ1 − µ0) (62)

+ xTΣ−1(µ1 − µ0) (63)

≡ α0 + αTx. (64)

On the other hand, the logistic regression model is, by assumption,

log

(
P(Y = 1|X = x)

P(Y = 0|X = x)

)
= β0 + βTx.

These are the same model since they both lead to classification rules that are linear in x.
The difference is in how we estimate the parameters.

This is an example of a generative versus a discriminative model. In Gaussian LDA we
estimate the whole joint distribution by maximizing the full likelihood

n∏
i=1

p(Xi, Yi) =
n∏
i=1

p(Xi|Yi)︸ ︷︷ ︸
Gaussian

n∏
i=1

p(Yi)︸ ︷︷ ︸
Bernoulli

. (65)

In logistic regression we maximize the conditional likelihood
∏n

i=1 p(Yi|Xi) but ignore the
second term p(Xi):

n∏
i=1

p(Xi, Yi) =
n∏
i=1

p(Yi|Xi)︸ ︷︷ ︸
logistic

n∏
i=1

p(Xi)︸ ︷︷ ︸
ignored

. (66)

Since classification only requires the knowledge of p(y|x), we don’t really need to estimate
the whole joint distribution. Logistic regression leaves the marginal distribution p(x) un-
specified so it relies on less parametric assumption than LDA. This is an advantage of the
logistic regression approach over LDA. However, if the true class conditional distributions
are Gaussian, the logistic regression will be asymptotically less efficient than LDA, i.e. to
achieve a certain level of classification error, the logistic regression requires more samples.
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7 Regularized Logistic Regression

As with linear regression, when the dimension d of the covariate is large, we cannot simply fit
a logistic model to all the variables without experiencing numerical and statistical problems.
Akin to the lasso, we will use regularized logistic regression, which includes sparse logistic
regression and ridge logistic regression.

Let `(β0, β) be the log-likelihood defined in (49). The sparse logistic regression estimator is
an `1-regularized conditional log-likelihood estimator

β̂0, β̂ = argmin
β0,β

{
−`(β0, β) + λ‖β‖1

}
. (67)

Similarly, the ridge logistic regression estimator is an `2-regularized conditional log-likelihood
estimator

β̂0, β̂ = argmin
β0,β

{
−`(β0, β) + λ‖β‖2

2

}
. (68)

The algorithm for logistic ridge regression only requires a simple modification of the itera-
tively reweighed least squares algorithm and is left as an exercise.

For sparse logistic regression, an easy way to calculate β̂0 and β̂ is to apply a `1-regularized
Newton procedure. Similar to the Newton method for unregularized logistic regression, for
the kth iteration, we first form a quadratic approximation to the negative log-likelihood
`(β0, β) based on the current estimates β̂(k).

−`(β0, β) =
1

2

n∑
i=1

wii
(
z

(k)
i − β0 −

d∑
j=1

βjxij
)2

︸ ︷︷ ︸
`Q(β0,β)

+constant. (69)

where wii and z
(k)
i are defined in (53) and (57). Since we have a `1-regularization term, the

updating formula for the estimate in the (k + 1)th step then becomes

β̂(k+1), β̂(k+1) = argmin
β0,β

{
1

2

n∑
i=1

wii
(
z

(k)
i − β0 −

d∑
j=1

βjxij
)2

+ λ‖β‖1

}
. (70)

This is a weighted lasso problem and can be solved using coordinate descent. See Figure 8.

Even though the above iterative procedure does not guarantee theoretical convergence, it
works very well in practice.
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Sparse Logistic Regression Using Coordinate Descent

Choose starting values β̂(0) = (β̂
(0)
0 , β̂

(0)
1 , . . . , β̂

(0)
d )T

(Outer loop) For k = 1, 2, . . ., iterate the following steps until convergence.

1. For i = 1, . . . , n, calculate π1(xi, β̂
(k)), z

(k)
i , w

(k)
ii according to (46), (57), and

(53).

2. α0 = ∂s
∑n

i=1 w
(k)
ii z

(k)
i∑n

i=1 w
(k)
ii

and α` = β̂
(k)
` for ` = 1, . . . d.

3. (Inner loop) iterate the following steps until convergence

For j ∈ {1, . . . , d}

(a) For i = 1, . . . , n, calculate rij = z
(k)
i − α0 −

∑
`6=j α`xi`.

(b) Calculate u
(k)
j =

∑n
i=1 w

(k)
ii rijxij and v

(k)
j =

∑n
i=1 w

(k)
ii x

2
ij.

(c) αj = sign
(
u

(k)
j

)[ |u(k)j |−λ

v
(k)
j

]
+

.

4. β̂
(k+1)
0 = α0 and β̂

(k+1)
` = α` for ` = 1, . . . d.

5. Update the π(xi, β̂)’s using (46) with the current estimate of β̂(k+1).

Figure 8: Sparse Logistic Regression
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Figure 9: The 0-1 classification loss (blue dashed line), hinge loss (red solid line) and logistic
loss (black dotted line).

8 Support Vector Machines

The support vector machine (SVM) classifier is a linear classifier that replaces the 0-1 loss
with a surrogate loss function. (Logistic regression uses a different surrogate.) In this
section, the outcomes are coded as −1 and +1. The 0-1 loss is L(x, y, β) = I(y 6= hβ(x)) =
I(yHβ(x) < 0) with the hinge loss Lhinge

(
yi, H(xi)

)
≡
[
1− YiH(Xi)

]
+

instead of the logistic

loss. This is the smallest convex function that lies above the 0-1 loss. (When we discuss
nonparameteric classifiers, we will consider more general support vector machines.)

The support vector machine classifier is ĥ(x) = I
(
Ĥ(x) > 0

)
where the hyperplane Ĥ(x) =

β̂0 + β̂Tx is obtained by minimizing

n∑
i=1

[
1− YiH(Xi)

]
+

+
λ

2
‖β‖2

2 (71)

where λ > 0 and the factor 1/2 is only for notational convenience.

Figure 9 compares the hinge loss, 0-1 loss, and logistic loss. The advantage of the hinge
loss is that it is convex, and it has a corner which leads to efficient computation and the
minimizer of E

(
1−Y H(X)

)
+

is the Bayes rule. A disadvantage of the hinge loss is that one

can’t recover the regression function m(x) = E(Y |X = x).

The SVM classifier is often developed from a geometric perspective. Suppose first that the
data are linearly separable, that is, there exists a hyperplane that perfectly separates the
two classes. How can we find a separating hyperplane? LDA is not guaranteed to find it. A
separating hyperplane will minimize

−
∑
i∈M

YiH(Xi).
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H(x) = β0 + βT x = 0

Figure 10: The hyperplane H(x) has the largest margin of all hyperplanes that separate the
two classes.

whereM is the index set of all misclassified data points. Rosenblatt’s perceptron algorithm
takes starting values and iteratively updates the coefficients as:(

β
β0

)
←−

(
β
β0

)
+ ρ

(
YiXi

Yi

)
where ρ > 0 is the learning rate. If the data are linearly separable, the perceptron algorithm is
guaranteed to converge to a separating hyperplane. However, there could be many separating
hyperplanes. Different starting values may lead to different separating hyperplanes. The
question is, which separating hyperplane is the best?

Intuitively, it seems reasonable to choose the hyperplane “furthest” from the data in the
sense that it separates the +1’s and -1’s and maximizes the distance to the closest point.
This hyperplane is called the maximum margin hyperplane. The margin is the distance from
the hyperplane to the nearest data point Points on the boundary of the margin are called
support vectors. See Figure 10. The goal, then, is to find a separating hyperplane which
maximizes the margin. After some simple algebra, we can show that (71) exactly achieves
this goal. In fact, (71) also works for data that are not linearly separable.

The unconstrained optimization problem (71) can be equivalently formulated in constrained
form:

min
β0,β

{1

2
‖β‖2

2 +
1

λ

n∑
i=1

ξi

}
(72)

subject to ∀i, ξi ≥ 0 and ξi ≥ 1− yiH(xi). (73)

Given two vectors a and b, let 〈a, b〉 = aT b =
∑

j ajbj denote the inner product of a and b.
The following lemma provides the dual of the optimization problem in (72).
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Lemma 11 The dual of the SVM optimization problem in (72) takes the form

α̂ = argmax
α∈Rn

{ n∑
i=1

αi −
1

2

n∑
i=1

n∑
k=1

αiαkYiyk〈Xi, xk〉
}

(74)

subject to 0 ≤ α1, . . . , αn ≤
1

λ
and

n∑
i=1

αiyi = 0, (75)

with the primal-dual relationship β̂ =
∑n

i=1 α̂yixi. We also have

α̂i

(
1− ξi − yi

(
β̂0 + β̂xi

))
= 0, i = 1, . . . , n. (76)

Proof. Let αi, γi ≥ 0 be the Lagrange multipliers. The Lagrangian function can be written
as

L(ξ, β, β0, α, γ) =
1

2
‖β‖2

2 +
1

λ

n∑
i=1

ξi +
n∑
i=1

αi
(
1− ξi − yiH(xi)

)
−

n∑
i=1

γiξi. (77)

The Karush-Kuhn-Tucker conditions are

∀i, αi ≥ 0, γi ≥ 0, ξi ≥ 0 and ξi ≥ 1− yiH(xi), (78)

β =
n∑
i=1

αiyixi,
n∑
i=1

αiyi = 0 and αi + γi = 1/λ, (79)

∀i, αi
(
1− ξi − yiH(xi)

)
= 0 and γiξi = 0. (80)

The dual formulation in (74) follows by plugging (78) and (79) into (77). The primal-dual
complementary slackness condition (76) is obtained from the first equation in (80). �

The dual problem (74) is easier to solve than the primal problem (71). The data points
(Xi, yi) for which α̂i > 0 are called support vectors. By (76) and (72), for all the data

points (xi, yi) satisfying yi
(
β̂0 + β̂Txi

)
> 1, there must be α̂i = 0. The solution for the dual

problem is sparse. From the first equality in (79), we see that the final estimate β̂ is a linear
combination only of these support vectors. Among these support vectors, if αi < 1/λ, we
call (xi, yi) a margin point. For a margin point (xi, yi), the last equality in (79) implies that
γi > 0, then the second equality in (80) implies ξi = 0. Moreover, using the first equality in
(80) , we get

β̂0 = −YiXT
i β̂. (81)

Therefore, once β̂ is given, we could calculate β̂0 using any margin point (Xi, yi).

Example 12 We consider classifying two types of irises, versicolor and viriginica. There are
50 observations in each class. The covariates are ”Sepal.Length” ”Sepal.Width” ”Petal.Length”
and ”Petal.Width”. After fitting a SVM we get a 3/100 misclassification rate. The SVM
uses 33 support vectors.
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9 Case Study I: Supernova Classification

A supernova is an exploding star. Type Ia supernovae are a special class of supernovae that
are very useful in astrophysics research. These supernovae have a characteristic light curve,
which is a plot of the luminosity of the supernova versus time. The maximum brightness
of all type Ia supernovae is approximately the same. In other words, the true (or absolute)
brightness of a type Ia supernova is known. On the other hand, the apparent (or observed)
brightness of a supernova can be measured directly. Since we know both the absolute and
apparent brightness of a type Ia supernova, we can compute its distance. Because of this,
type Ia supernovae are sometimes called standard candles. Two supernovae, one type Ia
and one non-type Ia, are illustrated in Figure 11. Astronomers also measure the redshift
of the supernova, which is essentially the speed at which the supernova is moving away
from us. The relationship between distance and redshift provides important information for
astrophysicists in studying the large scale structure of the universe.

Figure 11: Two supernova remnants from the NASA’s Chandra X-ray Observatory study.
The image in the right panel, the so-called Kepler supernova remnant, is ”Type Ia”. Such
supernovae have a very symmetric, circular remnant. This type of supernova is thought to
be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers
as a “standard candle” for measuring cosmic distances. The image in the left panel is a
different type of supernova that comes from “core collapse.” Such supernovae are distinctly
more asymmetric. (Credit: NASA/CXC/UCSC/L. Lopez et al.)

A challenge in astrophysics is to classify supernovae to be type Ia versus other types. [?]
released a mixture of real and realistically simulated supernovae and challenged the scientific
community to find effective ways to classify the type Ia supernovae. The dataset consists of
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about 20,000 simulated supernovae. For each supernova, there are a few noisy measurements
of the flux (brightness) in four different filters. These four filters correspond to different
wavelengths. Specifically, the filters correspond to the g-band (green), r-band (red), i-band
(infrared) and z-band (blue). See Figure 12.
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Figure 12: Four filters (g, r, i, z-bands) corresponding to a type Ia supernova DES-SN000051.
For each band, a weighted regression spline fit (solid red) with the corresponding standard
error curves (dashed green) is provided. The black points with bars represent the flux values
and their estimated standard errors.

To estimate a linear classifier we need to preprocess the data to extract features. One
difficulty is that each supernova is only measured at a few irregular time points, and these
time points are not aligned. To handle this problem we use nonparametric regression to get
a smooth curve. (We used the estimated measurement errors of each flux as weights and
fitted a weighted least squares regression spline to smooth each supernova.) All four filters
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of each supernova are then aligned according to the peak of the r-band. We also rescale so
that all the curves have the same maximum.

The goal of this study is to build linear classifiers to predict whether a supernova is type
Ia or not. For simplicity, we only use the information in the r-band. First, we align the
fitted regression spline curves of all supernovae by calibrating their maximum peaks and set
the corresponding time point to be day 0. There are altogether 19, 679 supernovae in the
dataset with 1, 367 being labeled. To get a higher signal-to-noise ratio, we throw away all
supernovae with less than 10 r-band flux measurements. We finally get a trimmed dataset
with 255 supernovae, 206 of which are type Ia and 49 of which are non-type Ia.
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Figure 13: The matrix of scatterplots of the first five features of the supernova data. On the
diagonal cells are the estimated univariate densities of each feature. The off-diagonal cells
visualize the pairwise scatter plots of the two corresponding variables with a least squares fit.
We see the time-domain features are highly correlated, while the frequency-domain features
are almost uncorrelated.

We use two types of features: the time-domain features and frequency-domain features. For
the time-domain features, the features are the interpolated regression spline values according
to an equally spaced time grid. In this study, the grid has length 100, ranging from day -20
to day 80. Since all the fitted regression curves have similar global shapes, the time-domain
features are expected to be highly correlated. This conjecture is confirmed by the matrix
of scatterplots of the first five features in 13. To make the features less correlated, we also
extract the frequency-domain features, which are simply the discrete cosine transformations
of the corresponding time-domain features. More specifically, given the time domain features
X1, . . . , Xd (d = 100), Their corresponding frequency domain features X̃1, . . . , X̃d can be
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written as

X̃j =
2

d

d∑
k=1

Xk cos
[π
d

(
k − 1

2

)
(j − 1)

]
for j = 1, . . . , d. (82)

The right panel of Figure 13 illustrates the scatter matrix of the first 5 frequency-domain
features. In contrast to the time-domain features, the frequency-domain features have low
correlation.

We apply sparse logistic regression (LR), support vector machines (SVM), diagonal linear
discriminant analysis (DLDA), and diagonal quadratic discriminant analysis (DQDA) on
this dataset. For each method, we conduct 100 runs, within each run, 40% of the data are
randomly selected as training and the remaining 60% are used for testing.

Figure 14 illustrates the regularization paths of sparse logistic regression using the ime-
domain and frequency-domain features. A regularization path provides the coefficient value
of each feature over all regularization parameters. Since the time-domain features are highly
correlated, the corresponding regularization path is quite irregular. In contrast, the paths
for the frequency-domain features behave stably.
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Figure 14: The regularization paths of sparse logistic regression using the features of time-
domain and frequency-domain. The vertical axis corresponds to the values of the coefficients,
plotted as a function of their `1-norm. The path using time-domain features are highly
irregular, while the path using frequency-domain features are more stable.

Figure 15 compares the classification performance of all these methods. The results show that
classification in the frequency domain is not helpful. The regularization paths of the SVM are
the same in both the time and frequency domains. This is expected since the discrete cosine
transformation is an orthonormal transformation, which corresponds to rotatating the data
in the feature space while preserving their Euclidean distances and inner products. It is easy
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Figure 15: Comparison of different methods on the supernova dataset using both the time-
domain (left column) and frequency-domain features (right Column). Top four figures: mean
error curves (black: training error, red: test error) and their corresponding standard error
bars for sparse logistic regression (LR) and support vector machines (SVM). Bottom two
figures: boxplots of the training and test errors of diagonal linear discriminant analysis
(DLDA) and diagonal quadratic discriminant analysis (DQDA). For the time-domain fea-
tures, the SVM achieves the smallest test error among all methods.
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to see that the SVM is rotation invariant. Sparse logistic regression is not rotation invariant
due to the `1-norm regularization term. The performance of the sparse logistic regression
in the frequency domain is worse than that in the time domain. The DLDA and DQDA
are also not rotation invariant; their performances decreases significantly in the frequency
domain compared to those in the time domain. In both time and frequency domains, the
SVM outperforms all the other methods. Then follows sparse logistic regression, which is
better than DLDA and DQDA.

10 Case Study II: Political Blog Classification

In this example, we classify political blogs according to whether their political leanings are
liberal or conservative. Snapshots of two political blogs are shown in Figure 16.

Figure 16: Examples of two political blogs with different orientations, one conservative and
the other liberal.

The data consist of 403 political blogs in a two-month window before the 2004 presidential
election. Among these blogs, 205 are liberal and 198 are conservative. We use bag-of-words
features, i.e., each unique word from these 403 blogs serves as a feature. For each blog,
the value of a feature is the number of occurrences of the word normalized by the total
number of words in the blog. After converting all words to lower case, we remove stop words
and only retain words with at least 10 occurrences across all the 403 blogs. This results
in 23,955 features, each of which corresponds to an English word. Such features are only a
crude representation of the text represented as an unordered collection of words, disregarding
all grammatical structure. We also extracted features that use hyperlink information. In
particular, we selected 292 out of the 403 blogs that are heavily linked to, and for each
blog i = 1, . . . , 403, its linkage information is represented as a 292-dimensional binary vector
(xi1, . . . , xi292)T where xij = 1 if the ith blog has a link to the jth feature blog. The total
number of covariates is then 23,955 + 292 = 24,247. Even though the link features only
constitute a small proportion, they are important for predictive accuracy.

We run the full regularization paths of sparse logistic regression and support vector machines,
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Figure 17: Comparison of the sparse logistic regression (LR) and support vector machine
(SVM) on the political blog data. (Top four figures): The mean error curves (Black: training
error, Red: test error) and their corresponding standard error bars of the sparse LR and SVM,
with and without the linkage information. (Bottom two figures): Two typical regularization
paths of the sparse logistic LR with and without the linkage information. On this dataset, the
diagonal linear discriminant analysis (DLDA) achieves a test error 0.303 (sd = 0.07) without
the linkage information and a test error 0.159 (sd = 0.02) with the linkage information.
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100 times each. For each run, the data are randomly partitioned into training (60%) and
testing (40%) sets. Figure 17 shows the mean error curves with their standard errors. From
Figure 17, we see that linkage information is crucial. Without the linkage features, the
smallest mean test error of the support vector machine along the regularization path is 0.247,
while that of the sparse logistic regression is 0.270. With the link features, the smallest test
error for the support vector machine becomes 0.132. Although the support vector machine
has a better mean error curve, it has much larger standard error. Two typical regularization
paths for sparse logistic regression with and without using the link features are provided
at the bottom of Figure 17. By examining these paths, we see that when the link features
are used, 11 of the first 20 selected features are link features. In this case, although thev
class conditional distribution is obviously not Gaussian, we still apply the diagonal linear
discriminant analysis (DLDA) on this dataset for a comparative study. Without the linkage
features, the DLDA has a mean test error 0.303 (sd = 0.07). With the linkage features,
DLDA has a mean test error 0.159 (sd = 0.02).
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