
Nonparametric Regression

Statistical Machine Learning, Spring 2019
Ryan Tibshirani and Larry Wasserman

1 Introduction

1.1 Basic setup

Given a random pair (X,Y) ∈ Rd × R, recall that the function

m0(x) = E(Y |X = x)

is called the regression function (of Y on X). The basic goal in nonparametric regression: to
construct a predictor of Y given X. This is basically the same as constructing an estimate m̂
of m0, from i.i.d. samples (Xi, Yi) ∈ Rd×R, i = 1, . . . , n. Given a new X, our prediction of
Y is m̂(X). We often call X the input, predictor, feature, etc., and Y the output, outcome,
response, etc.

Note for i.i.d. samples (Xi, Yi) ∈ Rd × R, i = 1, . . . , n, we can always write

Yi = m0(Xi) + εi, i = 1, . . . , n,

where εi, i = 1, . . . , n are i.i.d. random errors, with mean zero. Therefore we can think
about the sampling distribution as follows: (Xi, εi), i = 1, . . . , n are i.i.d. draws from some
common joint distribution, where E(εi) = 0, and Yi, i = 1, . . . , n are generated from the
above model.

It is common to assume that each εi is independent of Xi. This is a very strong as-
sumption, and you should think about it skeptically. We too will sometimes make this
assumption, for simplicity. It should be noted that a good portion of theoretical results
that we cover (or at least, similar theory) also holds without this assumption.

1.2 Fixed or random inputs?

Another common setup in nonparametric regression is to directly assume a model

Yi = m0(Xi) + εi, i = 1, . . . , n,

where now Xi, i = 1, . . . , n are fixed inputs, and εi, i = 1, . . . , n are i.i.d. with E(εi) = 0.
For arbitrary Xi, i = 1, . . . , n, this is really just the same as starting with the random

input model, and conditioning on the particular values of Xi, i = 1, . . . , n. (But note: after
conditioning on the inputs, the errors are only i.i.d. if we assumed that the errors and inputs
were independent in the first place.)

1

Generally speaking, nonparametric regression estimators are not defined with the ran-
dom or fixed setups specifically in mind, i.e., there is no real distinction made here. A
caveat: some estimators (like wavelets) do in fact assume evenly spaced fixed inputs, as in

Xi = i/n, i = 1, . . . , n,

for evenly spaced inputs in the univariate case.
Theory is not completely the same between the random and fixed input worlds (some

theory is sharper when we assume fixed input points, especially evenly spaced input points),
but for the most part the theory is quite similar.

Therefore, in what follows, we won’t be very precise about which setup we assume—
random or fixed inputs—because it mostly doesn’t matter when introducing nonparametric
regression estimators and discussing basic properties.

1.3 Notation

We will define an empirical norm ‖ · ‖n in terms of the training points Xi, i = 1, . . . , n,
acting on functions m : Rd → R, by

‖m‖2n =
1

n

n∑

i=1

m2(Xi).

This makes sense no matter if the inputs are fixed or random (but in the latter case, it is a
random norm)

When the inputs are considered random, we will write PX for the distribution of X, and
we will define the L2 norm ‖ · ‖2 in terms of PX , acting on functions m : Rd → R, by

‖m‖22 = E[m2(X)] =

∫
m2(x) dPX(x).

So when you see ‖ · ‖2 in use, it is a hint that the inputs are being treated as random
A quantity of interest will be the (squared) error associated with an estimator m̂ of m0,

which can be measured in either norm:

‖m̂−m0‖2n or ‖m̂−m0‖22.
In either case, this is a random quantity (since m̂ is itself random). We will study bounds
in probability or in expectation. The expectation of the errors defined above, in terms of
either norm (but more typically the L2 norm) is most properly called the risk; but we will
often be a bit loose in terms of our terminology and just call this the error.

1.4 Bias-Variance Tradeoff

If (X,Y) is a new pair then

E(Y − m̂(X))2 =

∫
b2n(x)dP (x) +

∫
v(x)dP (x) + τ2 = ||m̂−m0||22 + τ2

where bn(x) = E[m̂(x)] − m(x) is the bias, v(x) = Var(m̂(x)) is the variance and τ2 =
E(Y −m(X))2 is the un-avoidable error. Generally, we have to choose tuning parameters
carefully to balance the bias and variance.

2

1.5 What does “nonparametric” mean?

Importantly, in nonparametric regression we don’t assume a particular parametric form
for m0. This doesn’t mean, however, that we can’t estimate m0 using (say) a linear com-
bination of spline basis functions, written as m̂(x) =

∑p
j=1 β̂jgj(x). A common question:

the coefficients on the spline basis functions β1, . . . , βp are parameters, so how can this be
nonparametric? Again, the point is that we don’t assume a parametric form for m0, i.e.,
we don’t assume that m0 itself is an exact linear combination of splines basis functions
g1, . . . , gp.

1.6 What we cover here

The goal is to expose you to a variety of methods, and give you a flavor of some interesting
results, under different assumptions. A few topics we will cover into more depth than others,
but overall, this will be far from a complete treatment of nonparametric regression. Below
are some excellent texts out there that you can consult for more details, proofs, etc.

Nearest neighbors. Kernel smoothing, local polynomials: Tsybakov (2009) Smoothing
splines: de Boor (1978), Green & Silverman (1994), Wahba (1990) Reproducing kernel
Hilbert spaces: Scholkopf & Smola (2002), Wahba (1990) Wavelets: Johnstone (2011),
Mallat (2008). General references, more theoretical: Gyorfi, Kohler, Krzyzak & Walk
(2002), Wasserman (2006) General references, more methodological: Hastie & Tibshirani
(1990), Hastie, Tibshirani & Friedman (2009), Simonoff (1996)

Throughout, our discussion will bounce back and forth between the multivariate case
(d > 1) and univariate case (d = 1). Some methods have obvious (natural) multivariate ex-
tensions; some don’t. In any case, we can always use low-dimensional (even just univariate)
nonparametric regression methods as building blocks for a high-dimensional nonparametric
method. We’ll study this near the end, when we talk about additive models.

1.7 Holder Spaces and Sobolev Spaces

The class of Lipschitz functions H(1, L) on T ⊂ R is the set of functions g such that

|g(y)− g(x)| ≤ L|x− y| for all x, y ∈ T.

A differentiable function is Lipschitz if and only if it has bounded derivative. Conversely a
Lipschitz function is differentiable almost everywhere.

Let T ⊂ R and let β be an integer. The Holder space H(β, L) is the set of functions g
mapping T to R such that g is ` = β − 1 times differentiable and satisfies

|g(`)(y)− g(`)(x)| ≤ L|x− y| for all x, y ∈ T.

(There is an extension to real valued β but we will not need that.) If g ∈ H(β, L) and
` = β − 1, then we can define the Taylor approximation of g at x by

g̃(y) = g(y) + (y − x)g′(x) + · · ·+ (y − x)`

`!
g(`)(x)

and then |g(y)− g̃(y)| ≤ |y − x|β.

3

The definition for higher dimensions is similar. Let X be a compact subset of Rd. Let
β and L be positive numbers. Given a vector s = (s1, . . . , sd), define |s| = s1 + · · · + sd,
s! = s1! · · · sd!, xs = xs11 · · ·xsdd and

Ds =
∂s1+···+sd

∂xs11 · · · ∂xsdd
.

Let β be a positive integer. Define the Hölder class

Hd(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L‖x−y‖, for all s such that |s| = β−1, and all x, y

}
.

(1)
For example, if d = 1 and β = 2 this means that

|g′(x)− g′(y)| ≤ L |x− y|, for all x, y.

The most common case is β = 2; roughly speaking, this means that the functions have
bounded second derivatives.

Again, if g ∈ Hd(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L‖u− x‖β (2)

where

gx,β(u) =
∑

|s|≤β

(u− x)s

s!
Dsg(x). (3)

In the common case of β = 2, this means that
∣∣∣∣∣p(u)− [p(x) + (x− u)T∇p(x)]

∣∣∣∣∣ ≤ L||x− u||
2.

The Sobolev class S1(β, L) is the set of β times differentiable functions (technically, it
only requires weak derivatives) g : R→ R such that

∫
(g(β)(x))2dx ≤ L2.

Again this extends naturally to Rd. Also, there is an extension to non-integer β. It can be
shown that Hd(β, L) ⊂ Sd(β, L).

2 k-nearest-neighbors regression

Here’s a basic method to start us off: k-nearest-neighbors regression. We fix an integer
k ≥ 1 and define

m̂(x) =
1

k

∑

i∈Nk(x)

Yi, (4)

where Nk(x) contains the indices of the k closest points of X1, . . . , Xn to x.

4

This is not at all a bad estimator, and you will find it used in lots of applications, in
many cases probably because of its simplicity. By varying the number of neighbors k, we can
achieve a wide range of flexibility in the estimated function m̂, with small k corresponding
to a more flexible fit, and large k less flexible.

But it does have its limitations, an apparent one being that the fitted function m̂
essentially always looks jagged, especially for small or moderate k. Why is this? It helps to
write

m̂(x) =
n∑

i=1

wi(x)Yi, (5)

where the weights wi(x), i = 1, . . . , n are defined as

wi(x) =

{
1/k if Xi is one of the k nearest points to x

0 else.

Note that wi(x) is discontinuous as a function of x, and therefore so is m̂(x).
The representation (5) also reveals that the k-nearest-neighbors estimate is in a class of

estimates we call linear smoothers, i.e., writing Y = (Y1, . . . , Yn) ∈ Rn, the vector of fitted
values

µ̂ = (m̂(X1), . . . , m̂(Xn)) ∈ Rn

can simply be expressed as µ̂ = SY . (To be clear, this means that for fixed inputsX1, . . . , Xn,
the vector of fitted values µ̂ is a linear function of Y ; it does not mean that m̂(x) need behave
linearly as a function of x.) This class is quite large, and contains many popular estimators,
as we’ll see in the coming sections.

The k-nearest-neighbors estimator is universally consistent, which means E‖m̂−m0‖22 → 0
as n→∞, with no assumptions other than E(Y 2) ≤ ∞, provided that we take k = kn such
that kn →∞ and kn/n→ 0; e.g., k =

√
n will do. See Chapter 6.2 of Gyorfi et al. (2002).

Furthermore, assuming the underlying regression function m0 is Lipschitz continuous,
the k-nearest-neighbors estimate with k � n2/(2+d) satisfies

E‖m̂−m0‖22 . n−2/(2+d). (6)

See Chapter 6.3 of Gyorfi et al. (2002). Later, we will see that this is optimal.
Proof sketch: assume that Var(Y |X = x) = σ2, a constant, for simplicity, and fix

(condition on) the training points. Using the bias-variance tradeoff,

E
[(
m̂(x)−m0(x)

)2]
=
(
E[m̂(x)]−m0(x)

)2
︸ ︷︷ ︸

Bias2(m̂(x))

+E
[(
m̂(x)− E[m̂(x)]

)2]
︸ ︷︷ ︸

Var(m̂(x))

=

(
1

k

∑

i∈Nk(x)

(
m0(Xi)−m0(x)

))2

+
σ2

k

≤
(
L

k

∑

i∈Nk(x)

‖Xi − x‖2
)2

+
σ2

k
.

In the last line we used the Lipschitz property |m0(x) − m0(z)| ≤ L‖x − z‖2, for some
constant L > 0. Now for “most” of the points we’ll have ‖Xi − x‖2 ≤ C(k/n)1/d, for a

5

2 4 6 8 10

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Dimension d

ep
s^

(−
(2

+
d)

/d
)

● ● ● ● ● ●
●

●

●

●

Figure 1: The curse of dimensionality, with ε = 0.1

constant C > 0. (Think of a having input points Xi, i = 1, . . . , n spaced equally over (say)
[0, 1]d.) Then our bias-variance upper bound becomes

(CL)2
(
k

n

)2/d

+
σ2

k
,

We can minimize this by balancing the two terms so that they are equal, giving k1+2/d � n2/d,
i.e., k � n2/(2+d) as claimed. Plugging this in gives the error bound of n−2/(2+d), as claimed.

2.1 Curse of dimensionality

Note that the above error rate n−2/(2+d) exhibits a very poor dependence on the dimension
d. To see it differently: given a small ε > 0, think about how large we need to make n to
ensure that n−2/(2+d) ≤ ε. Rearranged, this says n ≥ ε−(2+d)/2. That is, as we increase d,
we require exponentially more samples n to achieve an error bound of ε. See Figure 1 for
an illustration with ε = 0.1

In fact, this phenomenon is not specific to k-nearest-neighbors, but a reflection of the
curse of dimensionality, the principle that estimation becomes exponentially harder as the
number of dimensions increases. This is made precise by minimax theory: we cannot hope
to do better than the rate in(6) over Hd(1, L), which we write for the space of L-Lipschitz
functions in d dimensions, for a constant L > 0. It can be shown that

inf
m̂

sup
m0∈Hd(1,L)

E‖m̂−m0‖22 & n−2/(2+d), (7)

where the infimum above is over all estimators m̂. See Chapter 3.2 of Gyorfi et al. (2002).
So why can we sometimes predict well in high dimensional problems? Presumably, it is

because m0 often (approximately) satisfies stronger assumptions. This suggests we should

6

look at classes of functions with more structure. One such example is the additive model,
covered later in the notes.

3 Kernel Smoothing and Local Polynomials

3.1 Kernel smoothing

Kernel regression or kernel smoothing begins with a kernel function K : R→ R, satisfying

∫
K(t) dt = 1,

∫
tK(t) dt = 0, 0 <

∫
t2K(t) dt <∞.

Three common examples are the box-car kernel:

K(t) =

{
1 |x| ≤ 1/2

0 otherwise
,

the Gaussian kernel:

K(t) =
1√
2π

exp(−t2/2),

and the Epanechnikov kernel:

K(t) =

{
3/4(1− t2) if |t| ≤ 1

0 else

Warning! Don’t confuse this with the notion of kernels in RKHS methods
which we cover later.

Given a bandwidth h > 0, the (Nadaraya-Watson) kernel regression estimate is defined
as

m̂(x) =

n∑

i=1

K

(‖x−Xi‖2
h

)
Yi

n∑

i=1

K

(‖x−Xi‖2
h

) =
∑

i

wi(x)Yi (8)

where wi(x) = K(‖x −Xi‖2/h)/
∑n

j=1K(‖x − xj‖2/h). Hence kernel smoothing is also a
linear smoother.

In comparison to the k-nearest-neighbors estimator in (4), which can be thought of as
a raw (discontinuous) moving average of nearby responses, the kernel estimator in (8) is a
smooth moving average of responses. See Figure 2 for an example with d = 1.

3.2 Error Analysis

The kernel smoothing estimator is universally consistent (E‖m̂−m0‖22 → 0 as n→∞, with
no assumptions other than E(Y 2) ≤ ∞), provided we take a compactly supported kernel
K, and bandwidth h = hn satisfying hn → 0 and nhdn →∞ as n→∞. See Chapter 5.2 of
Gyorfi et al. (2002). We can say more.

7

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O•

x0

f̂(x0)

Epanechnikov Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

•

x0

f̂(x0)

FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Figure 2: Comparing k-nearest-neighbor and Epanechnikov kernels, when d = 1. From
Chapter 6 of Hastie et al. (2009)

Theorem. Suppose that d = 1 and that m′′ is bounded. Also suppose that X has a
non-zero, differentiable density p and that the support is unbounded. Then, the risk is

Rn =
h4n
4

(∫
x2K(x)dx

)2 ∫ (
m′′(x) + 2m′(x)

p′(x)

p(x)

)2

dx

+
σ2
∫
K2(x)dx

nhn

∫
dx

p(x)
+ o

(
1

nhn

)
+ o(h4n)

where p is the density of PX .

The first term is the squared bias. The dependence on p and p′is the design bias and
is undesirable. We’ll fix this problem later using local linear smoothing. It follows that the
optimal bandwidth is hn ≈ n−1/5 yielding a risk of n−4/5. In d dimensions, the term nhn
becomes nhdn. In that case It follows that the optimal bandwidth is hn ≈ n−1/(4+d) yielding
a risk of n−4/(4+d).

If the support has boundaries then there is bias of order O(h) near the boundary.
This happens because of the asymmetry of the kernel weights in such regions. See Figure
3. Specifically, the bias is of order O(h2) in the interior but is of order O(h) near the
boundaries. The risk then becomes O(h3) instead of O(h4). We’ll fix this problems using
local linear smoothing. Also, the result above depends on assuming that PX has a density.
We can drop that assumption (and allow for boundaries) and get a slightly weaker result
due to Gyorfi, Kohler, Krzyzak and Walk (2002).

For simplicity, we will use the spherical kernel K(‖x‖) = I(‖x‖ ≤ 1); the results can be
extended to other kernels. Hence,

m̂(x) =

∑n
i=1 Yi I(‖Xi − x‖ ≤ h)∑n
i=1 I(‖Xi − x‖ ≤ h)

=

∑n
i=1 Yi I(‖Xi − x‖ ≤ h)

nPn(B(x, h))

8

where Pn is the empirical measure and B(x, h) = {u : ‖x − u‖ ≤ h}. If the denominator
is 0 we define m̂(x) = 0. The proof of the following theorem is from Chapter 5 of Györfi,
Kohler, Krzyżak and Walk (2002).

Theorem: Risk bound without density. Suppose that the distribution of X has
compact support and that Var(Y |X = x) ≤ σ2 <∞ for all x. Then

sup
P∈Hd(1,L)

E‖m̂−m‖2P ≤ c1h2 +
c2
nhd

. (9)

Hence, if h � n−1/(d+2) then

sup
P∈Hd(1,L)

E‖m̂−m‖2P ≤
c

n2/(d+2)
. (10)

The proof is in the appendix. Note that the rate n−2/(d+2) is slower than the pointwise
rate n−4/(d+2) because we have made weaker assumptions.

Recall from (7) we saw that this was the minimax optimal rate over Hd(1, L). More
generally, the minimax rate over Hd(α,L), for a constant L > 0, is

inf
m̂

sup
m0∈Hd(α,L)

E‖m̂−m0‖22 & n−2α/(2α+d), (11)

see again Chapter 3.2 of Gyorfi et al. (2002). However, as we saw above, with extra condi-
tions, we got the rate n−4/(4+d) which is minimax for Hd(2, L). We’ll get that rate under
weaker conditions with local linear regression.

If the support of the distribution of X lives on a smooth manifold of dimension r < d
then the term ∫

dP (x)

nP (B(x, h))

is of order 1/(nhr) instead of 1/(nhd). In that case, we get the improved rate n−2/(r+2).

3.3 Local Linear Regression

We can alleviate this boundary bias issue by moving from a local constant fit to a local
linear fit, or a local polynomial fit.

To build intuition, another way to view the kernel estimator in (8) is the following: at
each input x, define the estimate m̂(x) = θ̂x, where θ̂x is the minimizer of

n∑

i=1

K

(‖x−Xi‖
h

)
(Yi − θ)2,

over all θ ∈ R. In other words, Instead we could consider forming the local estimate
m̂(x) = α̂x + β̂Tx x, where α̂x, β̂x minimize

n∑

i=1

K

(‖x−Xi‖
h

)
(Yi − α− βTXi)

2.

over all α ∈ R, β ∈ Rd. This is called local linear regression.

9

6.1 One-Dimensional Kernel Smoothers 195

N-W Kernel at Boundary

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

O

O

O
OO
O

O

OO

O

O
O

O

OO

O

O

O
O

O

O

O
O

O

O

O

O

OO

O

O
O
O

O

O

O O

O
O
OO

O
O
O

O

O
O
O

O

O

O

O

O

O

O

O

O
O

O
O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

•

x0

f̂(x0)

Local Linear Regression at Boundary

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

O

O

O
OO
O

O

OO

O

O
O

O

OO

O

O

O
O

O

O

O
O

O

O

O

O

OO

O

O
O
O

O

O

O O

O
O
OO

O
O
O

O

O
O
O

O

O

O

O

O

O

O

O

O
O

O
O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

•

x0

f̂(x0)

FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0) − β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Figure 3: Comparing (Nadaraya-Watson) kernel smoothing to local linear regression; the
former is biased at the boundary, the latter is unbiased (to first-order). From Chapter 6 of
Hastie et al. (2009)

We can rewrite the local linear regression estimate m̂(x). This is just given by a weighted
least squares fit, so

m̂(x) = b(x)T (BTΩB)−1BTΩY,

where b(x) = (1, x) ∈ Rd+1, B ∈ Rn×(d+1) with ith row b(Xi), and Ω ∈ Rn×n is diagonal
with ith diagonal element K(‖x−Xi‖2/h). We can write more concisely as m̂(x) = w(x)TY ,
where w(x) = ΩB(BTΩB)−1b(x), which shows local linear regression is a linear smoother
too.

The vector of fitted values µ̂ = (m̂(x1), . . . , m̂(xn)) can be expressed as

µ̂ =

w1(x)TY
...

wn(x)TY

 = B(BTΩB)−1BTΩY = SY

which should look familiar to you from weighted least squares.
Now we’ll sketch how the local linear fit reduces the bias, fixing (conditioning on) the

training points. Compute at a fixed point x,

E[m̂(x)] =
n∑

i=1

wi(x)m0(Xi).

Using a Taylor expansion of m0 about x,

E[m̂(x)] = m0(x)

n∑

i=1

wi(x) +∇m0(x)T
n∑

i=1

(Xi − x)wi(x) +R,

10

where the remainder term R contains quadratic and higher-order terms, and under regular-
ity conditions, is small. One can check that in fact for the local linear regression estimator
m̂,

n∑

i=1

wi(x) = 1 and

n∑

i=1

(Xi − x)wi(x) = 0,

and so E[m̂(x)] = m0(x) +R, which means that m̂ is unbiased to first-order.
It can be shown that local linear regression removes boundary bias and design bias.

Theorem. Under some regularity conditions, the risk of m̂ is

h4n
4

∫ (
tr(m′′(x)

∫
K(u)uuTdu)

)2

dP (x)+
1

nhdn

∫
K2(u)du

∫
σ2(x)dP (x)+o(h4n+(nhdn)−1).

For a proof, see Fan & Gijbels (1996). For points near the boundary, the bias is
Ch2m′′(x) + o(h2) whereas, the bias is Chm′(x) + o(h) for kernel estimators.

In fact, Fan (1993) shows a rather remarkable result. Let Rn be the minimax risk for
estimating m(x0) over the class of functions with bounded second derivatives in a neighbor-
hood of x0. Let the maximum risk rn of the local linear estimator with optimal bandwidth
satisfies

1 + o(1) ≥ Rn
rn
≥ (0.896)2 + o(1).

Moreover, if we compute the minimax risk over all linear estimators we get Rn
rn
→ 1.

3.4 Higher-order smoothness

How can we hope to get optimal error rates over Hd(α, d), when α ≥ 2? With kernels there
are basically two options: use local polynomials, or use higher-order kernels

Local polynomials build on our previous idea of local linear regression (itself an extension
of kernel smoothing.) Consider d = 1, for concreteness. Define m̂(x) = β̂x,0 +

∑k
j=1 β̂x,jx

j ,
where β̂x,0, . . . , β̂x,k minimize

n∑

i=1

K

(|x−Xi|
h

)(
Yi − β0 −

k∑

j=1

βjX
j
i

)2
.

over all β0, β1, . . . , βk ∈ R. This is called (kth-order) local polynomial regression
Again we can express

m̂(x) = b(x)(BTΩB)−1BTΩy = w(x)T y,

where b(x) = (1, x, . . . , xk), B is an n× (k+1) matrix with ith row b(Xi) = (1, Xi, . . . , X
k
i),

and Ω is as before. Hence again, local polynomial regression is a linear smoother
Assuming that m0 ∈ H1(α,L) for a constant L > 0, a Taylor expansion shows that the

local polynomial estimator m̂ of order k, where k is the largest integer strictly less than α
and where the bandwidth scales as h � n−1/(2α+1), satisfies

E‖m̂−m0‖22 . n−2α/(2α+1).

11

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0

t

Figure 4: A higher-order kernel function: specifically, a kernel of order 4

See Chapter 1.6.1 of Tsybakov (2009). This matches the lower bound in (11) (when d = 1)
In multiple dimensions, d > 1, local polynomials become kind of tricky to fit, because of

the explosion in terms of the number of parameters we need to represent a kth order poly-
nomial in d variables. Hence, an interesting alternative is to return back kernel smoothing
but use a higher-order kernel. A kernel function K is said to be of order k provided that

∫
K(t) dt = 1,

∫
tjK(t) dt = 0, j = 1, . . . , k − 1, and 0 <

∫
tkK(t) dt <∞.

This means that the kernels we were looking at so far were of order 2
An example of a 4th-order kernel is K(t) = 3

8(3− 5t2)1{|t| ≤ 1}, plotted in Figure 4.
Notice that it takes negative values.

Lastly, while local polynomial regression and higher-order kernel smoothing can help
“track” the derivatives of smooth functions m0 ∈ Hd(α,L), α ≥ 2, it should be noted that
they don’t share the same universal consistency property of kernel smoothing (or k-nearest-
neighbors). See Chapters 5.3 and 5.4 of Gyorfi et al. (2002)

4 Splines

Suppose that d = 1. Define an estimator by

m̂ = argmin
f

n∑

i=1

(
Yi −m(Xi)

)2
+ λ

∫ 1

0
m′′(x)2 dx. (12)

Spline Lemma. The minimizer of (25) is a cubic spline with knots at the data points.
(Proof in the Appendix.)

12

The key result presented above tells us that we can choose a basis η1, . . . , ηn for the set
of kth-order natural splines with knots over x1, . . . , xn, and reparametrize the problem as

β̂ = argmin
β∈Rn

n∑

i=1

(
Yi −

n∑

j=1

βjηj(Xi)
)2

+ λ

∫ 1

0

(n∑

j=1

βjη
′′
j (x)

)2
dx. (13)

This is a finite-dimensional problem, and after we compute the coefficients β̂ ∈ Rn, we know
that the smoothing spline estimate is simply m̂(x) =

∑n
j=1 β̂jηj(x)

Defining the basis matrix and penalty matrices N,Ω ∈ Rn×n by

Nij = ηj(Xi) and Ωij =

∫ 1

0
η
′′
i (x)η

′′
j (x) dx for i, j = 1, . . . , n, (14)

the problem in (27) can be written more succinctly as

β̂ = argmin
β∈Rn

‖Y −Nβ‖22 + λβΩβ, (15)

showing the smoothing spline problem to be a type of generalized ridge regression problem.
In fact, the solution in (29) has the explicit form

β̂ = (NTN + λΩ)−1NTY,

and therefore the fitted values µ̂ = (m̂(x1), . . . , m̂(xn)) are

µ̂ = N(NTN + λΩ)−1NTY ≡ SY. (16)

Therefore, once again, smoothing splines are a type of linear smoother
A special property of smoothing splines: the fitted values in (30) can be computed

in O(n) operations. This is achieved by forming N from the B-spline basis (for natural
splines), and in this case the matrix NTN + ΩI ends up being banded (with a bandwidth
that only depends on the polynomial order k). In practice, smoothing spline computations
are extremely fast

4.1 Error rates

Recall the Sobolev class of functions S1(m,C): for an integer m ≥ 0 and C > 0, to contain
all m times differentiable functions f : R→ R such that

∫ (
f (m)(x)

)2
dx ≤ C2.

(The Sobolev class Sd(m,C) in d dimensions can be defined similarly, where we sum over
all partial derivatives of order m.)

Assuming m0 ∈ S1(m,C) for the underlying regression function, where C > 0 is a
constant, the smoothing spline estimator m̂ of polynomial order k = 2m − 1 with tuning
parameter λ � n1/(2m+1) � n1/(k+2) satisfies

‖m̂−m0‖2n . n−2m/(2m+1) in probability.

The proof of this result uses much more fancy techniques from empirical process theory
(entropy numbers) than the proofs for kernel smoothing. See Chapter 10.1 of van de Geer
(2000) This rate is seen to be minimax optimal over S1(m,C) (e.g., Nussbaum (1985)).

13

5 Mercer kernels, RKHS

5.1 Hilbert Spaces

A Hilbert space is a complete inner product space. We will see that a reproducing kernel
Hilbert space (RKHS) is a Hilbert space with extra structure that makes it very useful for
statistics and machine learning.

An example of a Hilbert space is

L2[0, 1] =
{
f : [0, 1]→ R :

∫
f2 <∞

}

endowed with the inner product

〈f, g〉 =

∫
f(x)g(x)dx.

The corresponding norm is

||f || =
√
〈f, f〉 =

√∫
f2(x)dx.

We write fn → f to mean that ||fn − f || → 0 as n→∞.

5.2 Evaluation Functional

The evaluation functional δx assigns a real number to each function. It is defined by
δxf = f(x). In general, the evaluation functional is not continuous. This means we can
have fn → f but δxfn does not converge to δxf . For example, let f(x) = 0 and fn(x) =√
nI(x < 1/n2). Then ||fn − f || = 1/

√
n→ 0. But δ0fn =

√
n which does not converge to

δ0f = 0. Intuitively, this is because Hilbert spaces can contain very unsmooth functions.
We shall see that RKHS are Hilbert spaces where the evaluation functional is continuous.
Intuitively, this means that the functions in the space are well-behaved.

5.3 Nonparametric Regression

We observe (X1, Y1), . . . , (Xn, Yn) and we want to estimate m(x) = E(Y |X = x). The
approach we used earlier was based on smoothing kernels:

m̂(x) =

∑
i Yi K

(
||x−Xi||

h

)

∑
iK
(
||x−Xi||

h

) .

Another approach is regularization: choose m to minimize
∑

i

(Yi −m(Xi))
2 + λJ(m)

for some penalty J . This is equivalent to: choose m ∈ M to minimize
∑

i(Yi −m(Xi))
2

where M = {m : J(m) ≤ L} for some L > 0.
We would like to construct M so that it contains smooth functions. We shall see that

a good choice is to use a RKHS.

14

5.4 Mercer Kernels

A RKHS is defined by a Mercer kernel. A Mercer kernel K(x, y) is a function of two
variables that is symmetric and positive definite. This means that, for any function f ,

∫ ∫
K(x, y)f(x)f(y)dx dy ≥ 0.

(This is like the definition of a positive definite matrix: xTAx ≥ 0 for each x.)
Our main example is the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

Given a kernel K, let Kx(·) be the function obtained by fixing the first coordinate. That
is, Kx(y) = K(x, y). For the Gaussian kernel, Kx is a Normal, centered at x. We can create
functions by taking linear combinations of the kernel:

f(x) =

k∑

j=1

αjKxj (x).

Let H0 denote all such functions:

H0 =

{
f :

k∑

j=1

αjKxj (x)

}
.

Given two such functions f(x) =
∑k

j=1 αjKxj (x) and g(x) =
∑m

j=1 βjKyj (x) we define an
inner product

〈f, g〉 = 〈f, g〉K =
∑

i

∑

j

αiβjK(xi, yj).

In general, f (and g) might be representable in more than one way. You can check that
〈f, g〉K is independent of how f (or g) is represented. The inner product defines a norm:

||f ||K =
√
〈f, f, 〉 =

√∑

j

∑

k

αjαkK(xj , xk) =
√
αTKα

where α = (α1, . . . , αk)
T and K is the k × k matrix with Kjk = K(xj , xk).

5.5 The Reproducing Property

Let f(x) =
∑

i αiKxi(x). Note the following crucial property:

〈f,Kx〉 =
∑

i

αiK(xi, x) = f(x).

This follows from the definition of 〈f, g〉 where we take g = Kx. This implies that

〈Kx,Ky〉 = K(x, y).

15

This is called the reproducing property. It also implies that Kx is the representer of the
evaluation functional.

The completion of H0 with respect to || · ||K is denoted by HK and is called
the RKHS generated by K.

To verify that this is a well-defined Hilbert space, you should check that the following
properties hold:

〈f, g〉 = 〈g, f〉
〈cf + dg, h〉 = c〈f, h〉+ c〈g, h〉
〈f, f〉 = 0 iff f = 0.

The last one is not obvious so let us verify it here. It is easy to see that f = 0 implies
that 〈f, f〉 = 0. Now we must show that 〈f, f〉 = 0 implies that f(x) = 0. So suppose that
〈f, f〉 = 0. Pick any x. Then

0 ≤ f2(x) = 〈f,Kx〉2 = 〈f,Kx〉 〈f,Kx〉
≤ ||f ||2 ||Kx||2 = 〈f, f〉2 ||Kx||2 = 0

where we used Cauchy-Schwartz. So 0 ≤ f2(x) ≤ 0 which means that f(x) = 0.
Returning to the evaluation functional, suppose that fn → f . Then

δxfn = 〈fn,Kx〉 → 〈f,Kx〉 = f(x) = δxf

so the evaluation functional is continuous. In fact, a Hilbert space is a RKHS if and
only if the evaluation functionals are continuous.

5.6 Examples

Example 1. Let H be all functions f on R such that the support of the Fourier transform
of f is contained in [−a, a]. Then

K(x, y) =
sin(a(y − x))

a(y − x)

and

〈f, g〉 =

∫
fg.

Example 2. Let H be all functions f on (0, 1) such that

∫ 1

0
(f2(x) + (f ′(x))2)x2dx <∞.

Then
K(x, y) = (xy)−1

(
e−xsinh(y)I(0 < x ≤ y) + e−ysinh(x)I(0 < y ≤ x)

)

and

||f ||2 =

∫ 1

0
(f2(x) + (f ′(x))2)x2dx.

16

Example 3. The Sobolev space of order m is (roughly speaking) the set of functions f
such that

∫
(f (m))2 <∞. For m = 1 and X = [0, 1] the kernel is

K(x, y) =

{
1 + xy + xy2

2 −
y3

6 0 ≤ y ≤ x ≤ 1

1 + xy + yx2

2 − x3

6 0 ≤ x ≤ y ≤ 1

and

||f ||2K = f2(0) + f ′(0)2 +

∫ 1

0
(f ′′(x))2dx.

5.7 Spectral Representation

Suppose that supx,yK(x, y) < ∞. Define eigenvalues λj and orthonormal eigenfunctions
ψj by ∫

K(x, y)ψj(y)dy = λjψj(x).

Then
∑

j λj <∞ and supx |ψj(x)| <∞. Also,

K(x, y) =

∞∑

j=1

λjψj(x)ψj(y).

Define the feature map Φ by

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .).

We can expand f either in terms of K or in terms of the basis ψ1, ψ2, . . .:

f(x) =
∑

i

αiK(xi, x) =
∞∑

j=1

βjψj(x).

Furthermore, if f(x) =
∑

j ajψj(x) and g(x) =
∑

j bjψj(x), then

〈f, g〉 =

∞∑

j=1

ajbj
λj

.

Roughly speaking, when ||f ||K is small, then f is smooth.

5.8 Representer Theorem

Let ` be a loss function depending on (X1, Y1), . . . , (Xn, Yn) and on f(X1), . . . , f(Xn). Let
f̂ minimize

`+ g(||f ||2K)

where g is any monotone increasing function. Then f̂ has the form

f̂(x) =
n∑

i=1

αiK(xi, x)

for some α1, . . . , αn.

17

5.9 RKHS Regression

Define m̂ to minimize
R =

∑

i

(Yi −m(Xi))
2 + λ||m||2K .

By the representer theorem, m̂(x) =
∑n

i=1 αiK(xi, x). Plug this into R and we get

R = ||Y −Kα||2 + λαTKα

where Kjk = K(Xj , Xk) is the Gram matrix. The minimizer over α is

α̂ = (K + λI)−1Y

and m̂(x) =
∑

j α̂jK(Xi, x). The fitted values are

Ŷ = Kα̂ = K(K + λI)−1Y = LY.

So this is a linear smoother.
We can use cross-validation to choose λ. Compare this with smoothing kernel

regression.

5.10 Logistic Regression

Let

m(x) = P(Y = 1|X = x) =
ef(x)

1 + ef(x)
.

We can estimate m by minimizing

−loglikelihood + λ||f ||2K .

Then f̂ =
∑

jK(xj , x) and α may be found by numerical optimization. In this case,
smoothing kernels are much easier.

5.11 Support Vector Machines

Suppose Yi ∈ {−1,+1}. Recall the the linear SVM minimizes the penalized hinge loss:

J =
∑

i

[1− Yi(β0 + βTXi)]+ +
λ

2
||β||22.

The dual is to maximize ∑

i

αi −
1

2

∑

i,j

αiαjYiYj〈Xi, Xj〉

subject to 0 ≤ αi ≤ C.
The RKHS version is to minimize

J =
∑

i

[1− Yif(Xi)]+ +
λ

2
||f ||2K .

The dual is the same except that 〈Xi, Xj〉 is replaced with K(Xi, Xj). This is called the
kernel trick.

18

5.12 The Kernel Trick

This is a fairly general trick. In many algorithms you can replace 〈xi, xj〉 with K(xi, xj) and
get a nonlinear version of the algorithm. This is equivalent to replacing x with Φ(x) and
replacing 〈xi, xj〉 with 〈Φ(xi),Φ(xj)〉. However, K(xi, xj) = 〈Φ(xi),Φ(xj)〉 and K(xi, xj) is
much easier to compute.

In summary, by replacing 〈xi, xj〉 with K(xi, xj) we turn a linear procedure into a
nonlinear procedure without adding much computation.

5.13 Hidden Tuning Parameters

There are hidden tuning parameters in the RKHS. Consider the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

For nonparametric regression we minimize
∑

i(Yi − m(Xi))
2 subject to ||m||K ≤ L. We

control the bias variance tradeoff by doing cross-validation over L. But what about σ?
This parameter seems to get mostly ignored. Suppose we have a uniform distribution

on a circle. The eigenfunctions of K(x, y) are the sines and cosines. The eigenvalues λk die
off like (1/σ)2k. So σ affects the bias-variance tradeoff since it weights things towards lower
order Fourier functions. In principle we can compensate for this by varying L. But clearly
there is some interaction between L and σ. The practical effect is not well understood.
We’ll see this again when we discuss interpolation.

Now consider the polynomial kernel K(x, y) = (1 + 〈x, y〉)d. This kernel has the same
eigenfunctions but the eigenvalues decay at a polynomial rate depending on d. So there is
an interaction between L, d and, the choice of kernel itself.

6 Linear smoothers

6.1 Definition

Every estimator we have discussed so far is a linear smoother meaning that m̂(x) =∑
iwi(x)Yi for some weights wi(x) that do not depend on the Y ′i s. Hence, the fitted values

µ̂ = (m̂(X1), . . . , m̂(Xn)) are of the form µ̂ = SY for some matrix S ∈ Rn×n depending on
the inputs X1, . . . , Xn—and also possibly on a tuning parameter such as h in kernel smooth-
ing, or λ in smoothing splines—but not on the Yi’s. We call S, the smoothing matrix. For
comparison, recall that in linear regression, µ̂ = HY for some projection matrix H.

For linear smoothers µ̂ = SY , the effective degrees of freedom is defined to be

ν ≡ df(µ̂) ≡
n∑

i=1

Sii = tr(S),

the trace of the smooth matrix S

19

6.2 Cross-validation

K-fold cross-validation can be used to estimate the prediction error and choose tuning
parameters.

For linear smoothers µ̂ = (m̂(x1), . . . m̂(xn)) = SY , leave-one-out cross-validation can
be particularly appealing because in many cases we have the seemingly magical reduction

CV(m̂) =
1

n

n∑

i=1

(
Yi − m̂−i(Xi)

)2
=

1

n

n∑

i=1

(
Yi − m̂(Xi)

1− Sii

)2

, (17)

where m̂−i denotes the estimated regression function that was trained on all but the ith pair
(Xi, Yi). This leads to a big computational savings since it shows us that, to compute leave-
one-out cross-validation error, we don’t have to actually ever compute m̂−i, i = 1, . . . , n.

Why does (17) hold, and for which linear smoothers µ̂ = Sy? Just rearranging (17)
perhaps demystifies this seemingly magical relationship and helps to answer these questions.
Suppose we knew that m̂ had the property

m̂−i(Xi) =
1

1− Sii
(
m̂(Xi)− SiiYi

)
. (18)

That is, to obtain the estimate at Xi under the function m̂−i fit on all but (Xi, Yi), we take
the sum of the linear weights (from our original fitted function m̂) across all but the ith
point, m̂(Xi)− SiiYi =

∑
i 6=j SijYj , and then renormalize so that these weights sum to 1.

This is not an unreasonable property; e.g., we can immediately convince ourselves that
it holds for kernel smoothing. A little calculation shows that it also holds for smoothing
splines (using the Sherman-Morrison update formula).

From the special property (18), it is easy to show the leave-one-out formula (17). We
have

Yi − m̂−i(Xi) = Yi −
1

1− Sii
(
m̂(Xi)− SiiYi

)
=
Yi − m̂(Xi)

1− Sii
,

and then squaring both sides and summing over n gives (17).
Finally, generalized cross-validation is a small twist on the right-hand side in (17) that

gives an approximation to leave-one-out cross-validation error. It is defined as by replacing
the appearances of diagonal terms Sii with the average diagonal term tr(S)/n,

GCV(m̂) =
1

n

n∑

i=1

(
Yi − m̂(Xi)

1− tr(S)/n

)2

= (1− ν/n)−2R̂

where ν is the effective degrees of freedom and R̂ is the training error. This can be of
computational advantage in some cases where tr(S) is easier to compute that individual
elements Sii.

7 Additive models

7.1 Motivation and definition

Computational efficiency and statistical efficiency are both very real concerns as the dimen-
sion d grows large, in nonparametric regression. If you’re trying to fit a kernel, thin-plate

20

spline, or RKHS estimate in > 20 dimensions, without any other kind of structural con-
straints, then you’ll probably be in trouble (unless you have a very fast computer and tons
of data).

Recall from (11) that the minimax rate over the Holder class Hd(α,L) is n−2α/(2α+d),
which has an exponentially bad dependence on the dimension d. This is usually called the
curse of dimensionality (though the term apparently originated with Bellman (1962), who
encountered an analogous issue but in a separate context—dynamic programming).

What can we do? One answer is to change what we’re looking for, and fit estimates
with less flexibility in high dimensions. Think of a linear model in d variables: there is a
big difference between this and a fully nonparametric model in d variables. Is there some
middle man that we can consider, that would make sense?

Additive models play the role of this middle man. Instead of considering a full d-
dimensional function of the form

m(x) = m(x(1), . . . , x(d)) (19)

we restrict our attention to functions of the form

m(x) = m1(x(1)) + · · ·+md(x(d)). (20)

As each function mj , j = 1, . . . , d is univariate, fitting an estimate of the form (20) is
certainly less ambitious than fitting one of the form (19). On the other hand, the scope
of (20) is still big enough that we can capture interesting (marginal) behavior in high
dimensions.

There is a link to naive-Bayes classification that we will discuss later.
The choice of estimator of the form (20) need not be regarded as an assumption we

make about the true function m0, just like we don’t always assume that the true model is
linear when using linear regression. In many cases, we fit an additive model because we
think it may provide a useful approximation to the truth, and is able to scale well with the
number of dimensions d.

A classic result by Stone (1985) encapsulates this idea precisely. He shows that, while
it may be difficult to estimate an arbitrary regression function m0 in multiple dimensions,
we can still estimate its best additive approximation madd well. Assuming each component
function madd

0,j , j = 1, . . . , d lies in the Holder class H1(α,L), for constant L > 0, and
we can use an additive model, with each component m̂j , j = 1, . . . , d estimated using an
appropriate kth degree spline, to give

E‖m̂j −madd
j ‖22 . n−2α/(2α+1), j = 1, . . . , d.

Hence each component of the best additive approximation f
add

to m0 can be estimated
at the optimal univariate rate. Loosely speaking, though we cannot hope to recover m0

arbitrarily, we can recover its major structure along the coordinate axes.

7.2 Backfitting

Estimation with additive models is actually very simple; we can just choose our favorite
univariate smoother (i.e., nonparametric estimator), and cycle through estimating each

21

function mj , j = 1, . . . , d individually (like a block coordinate descent algorithm). Denote
the result of running our chosen univariate smoother to regress Y = (Y1, . . . , Yn) ∈ Rn over
the input points Z = (Z1, . . . , Zn) ∈ Rn as

m̂ = Smooth(Z, Y).

E.g., we might choose Smooth(·, ·) to be a cubic smoothing spline with some fixed value of
the tuning parameter λ, or even with the tuning parameter selected by generalized cross-
validation

Once our univariate smoother has been chosen, we initialize m̂1, . . . , m̂d (say, to all to
zero) and cycle over the following steps for j = 1, . . . , d, 1, . . . , d, . . .:

1. define ri = Yi −
∑

` 6=j m̂`(xi`), i = 1, . . . , n;

2. smooth m̂j = Smooth(x(j), r);

3. center m̂j = m̂j − 1
n

∑n
i=1 m̂j(Xi(j)).

This algorithm is known as backfitting. In last step above, we are removing the mean from
each fitted function m̂j , j = 1, . . . , d, otherwise the model would not be identifiable. Our
final estimate therefore takes the form

m̂(x) = Y + m̂1(x(1)) + · · ·+ m̂(x(d))

where Y = 1
n

∑n
i=1 Yi. Hastie & Tibshirani (1990) provide a very nice exposition on the

some of the more practical aspects of backfitting and additive models.
In many cases, backfitting is equivalent to blockwise coordinate descent performed on

a joint optimization criterion that determines the total additive estimate. E.g., for the
additive cubic smoothing spline optimization problem,

m̂1, . . . , m̂d = argmin
m1,...,md

n∑

i=1

(
Yi −

d∑

j=1

mj(xij)

)2

+
d∑

j=1

λj

∫ 1

0
m′′j (t)

2 dt,

backfitting is exactly blockwise coordinate descent (after we reparametrize the above to be
in finite-dimensional form, using a natural cubic spline basis).

The beauty of backfitting is that it allows us to think algorithmically, and plug in
whatever we want for the univariate smoothers. This allows for several extensions. One
extension: we don’t need to use the same univariate smoother for each dimension, rather,
we could mix and match, choosing Smoothj(·, ·), j = 1, . . . , d to come from entirely different
methods or giving estimates with entirely different structures.

Another extension: to capture interactions, we can perform smoothing over (small)
groups of variables instead of individual variables. For example we could fit a model of the
form

m(x) =
∑

j

mj(x(j)) +
∑

j<k

mjk(x(j), x(k)).

22

7.3 Error rates

Error rates for additive models are both kind of what you’d expect and surprising. What
you’d expect: if the underlying function m0 is additive, and we place standard assumptions
on its component functions, such as f0,j ∈ S1(m,C), j = 1, . . . , d, for a constant C > 0,
a somewhat straightforward argument building on univariate minimax theory gives us the
lower bound

inf
m̂

sup
m0∈⊕dj=1S1(m,C)

E‖m̂−m0‖22 & dn−2m/(2m+1).

This is simply d times the univariate minimax rate. (Note that we have been careful to
track the role of d here, i.e., it is not being treated like a constant.) Also, standard methods
like backfitting with univariate smoothing splines of polynomial order k = 2m− 1, will also
match this upper bound in error rate (though the proof to get the sharp linear dependence
on d is a bit trickier).

7.4 Sparse additive models

Recently, sparse additive models have received a good deal of attention. In truly high
dimensions, we might believe that only a small subset of the variables play a useful role in
modeling the regression function, so might posit a modification of (20) of the form

m(x) =
∑

j∈S
mj(x(j))

where S ⊆ {1, . . . , d} is an unknown subset of the full set of dimensions.
This is a natural idea, and to estimate a sparse additive model, we can use methods that

are like nonparametric analogies of the lasso (more accurately, the group lasso). This is a
research topic still very much in development; some recent works are Lin & Zhang (2006),
Ravikumar et al. (2009), Raskutti et al. (2012). We’ll cover this in more detail when we
talk about the sparsity, the lasso, and high-dimensional estimation.

8 Variance Estimation and Confidence Bands

Let
σ2(x) = Var(Y |X = x).

We can estimate σ2(x) as follows. Let m̂(x) be an estimate of the regression function. Let
ei = Yi−m̂(Xi). Now apply nonparametric regression again treating e2i as the response. The
resulting estimator σ̂2(x) can be shown to be consistent under some regularity conditions.

Ideally we would also like to find random functions `n and un such that

P (`n(x) ≤ m(x) ≤ un(x) for all x)→ 1− α.

For the reasons we discussed earlier with density functions, this is essentially an impossible
problem.

We can, however, still get an informal (but useful) estimate the variability of m̂(x).
Suppose that m̂(x) =

∑
iwi(x)Yi. The conditional variance is

∑
iw

2
i (x)σ2(x) which can

23

be estimated by
∑

iw
2
i (x)σ̂2(x). An asymptotic, pointwise (biased) confidence band is

m̂(x)± zα/2
√∑

iw
2
i (x)σ̂2(x).

A better idea is to bootstrap the quantity

√
n supx |m̂(x)− E[m̂(x)]|

σ̂(x)

to get a bootstrap quantile tn. Then

[
m̂(x)− tnσ̂(x)√

n
, m̂(x) +

tnσ̂(x)√
n

]

is a bootstrap variability band.

9 Wavelet smoothing

Not every nonparametric regression estimate needs to be a linear smoother (though this
does seem to be very common), and wavelet smoothing is one of the leading nonlinear tools
for nonparametric estimation. The theory of wavelets is elegant and we only give a brief
introduction here; see Mallat (2008) for an excellent reference

You can think of wavelets as defining an orthonormal function basis, with the basis
functions exhibiting a highly varied level of smoothness. Importantly, these basis functions
also display spatially localized smoothness at different locations in the input domain. There
are actually many different choices for wavelets bases (Haar wavelets, symmlets, etc.), but
these are details that we will not go into

We assume d = 1. Local adaptivity in higher dimensions is not nearly as settled as
it is with smoothing splines or (especially) kernels (multivariate extensions of wavelets are
possible, i.e., ridgelets and curvelets, but are complex)

Consider basis functions, φ1, . . . , φn, evaluated over n equally spaced inputs over [0, 1]:

Xi = i/n, i = 1, . . . , n.

The assumption of evenly spaced inputs is crucial for fast computations; we also typically
assume with wavelets that n is a power of 2. We now form a wavelet basis matrix W ∈ Rn×n,
defined by

Wij = φj(Xi), i, j = 1, . . . , n

The goal, given outputs y = (y1, . . . , yn) over the evenly spaced input points, is to
represent y as a sparse combination of the wavelet basis functions. To do so, we first
perform a wavelet transform (multiply by W T):

θ̃ = W T y,

we threshold the coefficients θ (the threshold function Tλ to be defined shortly):

θ̂ = Tλ(θ̃),

24

and then perform an inverse wavelet transform (multiply by W):

µ̂ = Wθ̂

The wavelet and inverse wavelet transforms (multiplication by W T and W) each require
O(n) operations, and are practically extremely fast due do clever pyramidal multiplication
schemes that exploit the special structure of wavelets

The threshold function Tλ is usually taken to be hard-thresholding, i.e.,

[T hard
λ (z)]i = zi · 1{|zi| ≥ λ}, i = 1, . . . , n,

or soft-thresholding, i.e.,

[T soft
λ (z)]i =

(
zi − sign(zi)λ

)
· 1{|zi| ≥ λ}, i = 1, . . . , n.

These thresholding functions are both also O(n), and computationally trivial, making
wavelet smoothing very fast overall

We should emphasize that wavelet smoothing is not a linear smoother, i.e., there is no
single matrix S such that µ̂ = Sy for all y

We can write the wavelet smoothing estimate in a more familiar form, following our
previous discussions on basis functions and regularization. For hard-thresholding, we solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + λ2‖θ‖0,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂. Here ‖θ‖0 =
∑n

i=1 1{θi 6= 0},
the number of nonzero components of θ, called the “`0 norm”. For soft-thresholding, we
solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + 2λ‖θ‖1,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂. Here ‖θ‖1 =
∑n

i=1 |θi|, the `1
norm

9.1 The strengths of wavelets, the limitations of linear smoothers

Apart from its computational efficiency, an important strength of wavelet smoothing is that
it can represent a signal that has a spatially heterogeneous degree of smoothness, i.e., it
can be both smooth and wiggly at different regions of the input domain. The reason that
wavelet smoothing can achieve such local adaptivity is because it selects a sparse number
of wavelet basis functions, by thresholding the coefficients from a basis regression

We can make this more precise by considering convergence rates over an appropriate
function class. In particular, we define the total variation class M(k,C), for an integer k ≥ 0
and C > 0, to contain all k times (weakly) differentiable functions whose kth derivative
satisfies

TV(f (k)) = sup
0=z1<z2<...<zN<zN+1=1

N∑

j=1

|f (k)(zi+1)− f (k)(zi)| ≤ C.

(Note that if f has k + 1 continuous derivatives, then TV(f (k)) =
∫ 1
0 |f (k+1)(x)| dx.)

25

For the wavelet smoothing estimator, denoted by m̂wav, Donoho & Johnstone (1998)
provide a seminal analysis. Assuming that m0 ∈M(k,C) for a constant C > 0 (and further
conditions on the setup), they show that (for an appropriate scaling of the smoothing
parameter λ),

E‖m̂wav −m0‖22 . n−(2k+2)/(2k+3) and inf
m̂

sup
m0∈M(k,C)

E‖m̂−m0‖22 & n−(2k+2)/(2k+3).

(21)
Thus wavelet smoothing attains the minimax optimal rate over the function class M(k,C).
(For a translation of this result to the notation of the current setting, see Tibshirani (2014).)

Some important questions: (i) just how big is the function class M(k,C)? And (ii) can
a linear smoother also be minimax optimal over M(k,C)?

It is not hard to check M(k,C) ⊇ S1(k + 1, C ′), the (univariate) Sobolev space of order
k + 1, for some other constant C ′ > 0. We know from the previously mentioned theory
on Sobolev spaces that the minimax rate over S1(k + 1, C ′) is again n−(2k+2)/(2k+3). This
suggests that these two function spaces might actually be somewhat close in size

But in fact, the overall minimax rates here are sort of misleading, and we will see
from the behavior of linear smoothers that the function classes are actually quite different.
Donoho & Johnstone (1998) showed that the minimax error over M(k,C), restricted to
linear smoothers, satisfies

inf
m̂ linear

sup
m0∈M(k,C)

E‖m̂−m0‖22 & n−(2k+1)/(2k+2). (22)

(See again Tibshirani (2014) for a translation to the notation of the current setting.) Hence
the answers to our questions are: (ii) linear smoothers cannot cope with the heterogeneity
of functions in M(k,C), and are are bounded away from optimality, which means (i) we
can interpret M(k,C) as being much larger than S1(k + 1, C ′), because linear smoothers
can be optimal over the latter class but not over the former. See Figure 5 for a diagram

Let’s back up to emphasize just how remarkable the results (21), (22) really are. Though
it may seem like a subtle difference in exponents, there is actually a significant difference
in the minimax rate and minimax linear rate: e.g., when k = 0, this is a difference of n−1/2

(optimal) and n−1/2 (optimal among linear smoothers) for estimating a function of bounded
variation. Recall also just how broad the linear smoother class is: kernel smoothing, regres-
sion splines, smoothing splines, RKHS estimators ... none of these methods can achieve a
better rate than n−1/2 over functions of bounded variation

Practically, the differences between wavelets and linear smoothers in problems with
spatially heterogeneous smoothness can be striking as well. However, you should keep in
mind that wavelets are not perfect: a shortcoming is that they require a highly restrictive
setup: recall that they require evenly spaced inputs, and n to be power of 2, and there are
often further assumptions made about the behavior of the fitted function at the boundaries
of the input domain

Also, though you might say they marked the beginning of the story, wavelets are not the
end of the story when it comes to local adaptivity. The natural thing to do, it might seem,
is to make (say) kernel smoothing or smoothing splines more locally adaptive by allowing
for a local bandwidth parameter or a local penalty parameter. People have tried this, but it

26

Figure 5: A diagram of the minimax rates over M(k,C) (denoted Fk in the picture) and
S1(k + 1, C) (denoted Wk+1 in the picture)

is both difficult theoretically and practically to get right. A cleaner approach is to redesign
the kind of penalization used in constructing smoothing splines directly.

10 More on Splines: Regression and Smoothing Splines

10.1 Splines

• Regression splines and smoothing splines are motivated from a different perspective
than kernels and local polynomials; in the latter case, we started off with a special
kind of local averaging, and moved our way up to a higher-order local models. With
regression splines and smoothing splines, we build up our estimate globally, from a
set of select basis functions

• These basis functions, as you might guess, are splines. Let’s assume that d = 1 for
simplicity. (We’ll stay in the univariate case, for the most part, in this section.) A
kth-order spline f is a piecewise polynomial function of degree k that is continuous
and has continuous derivatives of orders 1, . . . , k − 1, at its knot points. Specifically,
there are t1 < . . . < tp such that f is a polynomial of degree k on each of the intervals

(−∞, t1], [t1, t2], . . . , [tp,∞)

and f (j) is continuous at t1, . . . , tp, for each j = 0, 1, . . . , k − 1

• Splines have some special (some might say: amazing!) properties, and they have been
a topic of interest among statisticians and mathematicians for a very long time. See

27

de Boor (1978) for an in-depth coverage. Informally, a spline is a lot smoother than
a piecewise polynomial, and so modeling with splines can serve as a way of reducing
the variance of fitted estimators. See Figure 6

• A bit of statistical folklore: it is said that a cubic spline is so smooth, that one cannot
detect the locations of its knots by eye!

• How can we parametrize the set of a splines with knots at t1, . . . , tp? The most natural
way is to use the truncated power basis, g1, . . . , gp+k+1, defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k+, j = 1, . . . , p.
(23)

(Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}.) From this we can see
that the space of kth-order splines with knots at t1, . . . , tp has dimension p+ k + 1

• While these basis functions are natural, a much better computational choice, both for
speed and numerical accuracy, is the B-spline basis. This was a major development
in spline theory and is now pretty much the standard in software. The key idea:
B-splines have local support, so a basis matrix that we form with them (to be defined
below) is banded. See de Boor (1978) or the Appendix of Chapter 5 in Hastie et al.
(2009) for details

10.2 Regression splines

• A first idea: let’s perform regression on a spline basis. In other words, given inputs
x1, . . . , xn and responses y1, . . . , yn, we consider fitting functions f that are kth-order
splines with knots at some chosen locations t1, . . . tp. This means expressing f as

f(x) =

p+k+1∑

j=1

βjgj(x),

where β1, . . . , βp+k+1 are coefficients and g1, . . . , gp+k+1, are basis functions for order
k splines over the knots t1, . . . , tp (e.g., the truncated power basis or B-spline basis)

• Letting y = (y1, . . . , yn) ∈ Rn, and defining the basis matrix G ∈ Rn×(p+k+1) by

Gij = gj(xi), i = 1, . . . , n, j = 1, . . . , p+ k + 1,

we can just use least squares to determine the optimal coefficients β̂ = (β̂1, . . . , β̂p+k+1),

β̂ = argmin
β∈Rp+k+1

‖y −Gβ‖22,

which then leaves us with the fitted regression spline f̂(x) =
∑p+k+1

j=1 β̂jgj(x)

• Of course we know that β̂ = (GTG)−1GT y, so the fitted values µ̂ = (f̂(x1), . . . , f̂(xn))
are

µ̂ = G(GTG)−1GT y,

and regression splines are linear smoothers

28

5.2 Piecewise Polynomials and Splines 143

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
O

O

O

O

O

OO O

Discontinuous

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
O

O

O

O

O

OO O

Continuous

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
OO

O

O

O

OO O

Continuous First Derivative

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
OO

O

O

O

OO O

Continuous Second Derivative

Piecewise Cubic Polynomials

ξ1ξ1

ξ1ξ1

ξ2ξ2

ξ2ξ2

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure 6: Illustration of the effects of enforcing continuity at the knots, across various orders
of the derivative, for a cubic piecewise polynomial. From Chapter 5 of Hastie et al. (2009)

29

• This is a classic method, and can work well provided we choose good knots t1, . . . , tp;
but in general choosing knots is a tricky business. There is a large literature on knot
selection for regression splines via greedy methods like recursive partitioning

10.3 Natural splines

• A problem with regression splines is that the estimates tend to display erractic be-
havior, i.e., they have high variance, at the boundaries of the input domain. (This
is the opposite problem to that with kernel smoothing, which had poor bias at the
boundaries.) This only gets worse as the polynomial order k gets larger

• A way to remedy this problem is to force the piecewise polynomial function to have a
lower degree to the left of the leftmost knot, and to the right of the rightmost knot—
this is exactly what natural splines do. A natural spline of order k, with knots at
t1 < . . . < tp, is a piecewise polynomial function f such that

– f is a polynomial of degree k on each of [t1, t2], . . . , [tp−1, tp],

– f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tp,∞),

– f is continuous and has continuous derivatives of orders 1, . . . , k−1 at t1, . . . , tp.

It is implicit here that natural splines are only defined for odd orders k

• What is the dimension of the span of kth order natural splines with knots at t1, . . . , tp?
Recall for splines, this was p+ k+ 1 (the number of truncated power basis functions).
For natural splines, we can compute this dimension by counting:

(k + 1) · (p− 1)
︸ ︷︷ ︸

a

+
((k − 1)

2
+ 1
)
· 2

︸ ︷︷ ︸
b

− k · p
︸︷︷︸
c

= p.

Above, a is the number of free parameters in the interior intervals [t1, t2], . . . , [tp−1, tp],
b is the number of free parameters in the exterior intervals (−∞, t1], [tp,∞), and c is
the number of constraints at the knots t1, . . . , tp. The fact that the total dimension
is p is amazing; this is independent of k!

• Note that there is a variant of the truncated power basis for natural splines, and a
variant of the B-spline basis for natural splines. Again, B-splines are the preferred
parametrization for computational speed and stability

• Natural splines of cubic order is the most common special case: these are smooth
piecewise cubic functions, that are simply linear beyond the leftmost and rightmost
knots

10.4 Smoothing splines

• Smoothing splines, at the end of the day, are given by a regularized regression over
the natural spline basis, placing knots at all inputs x1, . . . , xn. They circumvent the
problem of knot selection (as they just use the inputs as knots), and they control

30

for overfitting by shrinking the coefficients of the estimated function (in its basis
expansion)

• Interestingly, we can motivate and define a smoothing spline directly from a func-
tional minimization perspective. With inputs x1, . . . , xn lying in an interval [0, 1], the
smoothing spline estimate f̂ , of a given odd integer order k ≥ 0, is defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

(
f (m)(x)

)2
dx, where m = (k + 1)/2. (24)

This is an infinite-dimensional optimization problem over all functions f for the which
the criterion is finite. This criterion trades off the least squares error of f over the
observed pairs (xi, yi), i = 1, . . . , n, with a penalty term that is large when the mth
derivative of f is wiggly. The tuning parameter λ ≥ 0 governs the strength of each
term in the minimization

• By far the most commonly considered case is k = 3, i.e., cubic smoothing splines,
which are defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0
f ′′(x)2 dx (25)

• Remarkably, it so happens that the minimizer in the general smoothing spline prob-
lem (38) is unique, and is a natural kth-order spline with knots at the input points
x1, . . . , xn! Here we give a proof for the cubic case, k = 3, from Green & Silverman
(1994) (see also Exercise 5.7 in Hastie et al. (2009))

The key result can be stated as follows: if f̃ is any twice differentiable function on
[0, 1], and x1, . . . , xn ∈ [0, 1], then there exists a natural cubic spline f with knots at
x1, . . . , xn such that f(xi) = f̃(xi), i = 1, . . . , n and

∫ 1

0
f ′′(x)2 dx ≤

∫ 1

0
f̃ ′′(x)2 dx.

Note that this would in fact prove that we can restrict our attention in (25) to natural
splines with knots at x1, . . . , xn

Proof: the natural spline basis with knots at x1, . . . , xn is n-dimensional, so given any
n points zi = f̃(xi), i = 1, . . . , n, we can always find a natural spline f with knots at
x1, . . . , xn that satisfies f(xi) = zi, i = 1, . . . , n. Now define

h(x) = f̃(x)− f(x).

31

Consider
∫ 1

0
f ′′(x)h′′(x) dx = f ′′(x)h′(x)

∣∣∣
1

0
−
∫ 1

0
f ′′′(x)h′(x) dx

= −
∫ xn

x1

f ′′′(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x)h(x)
∣∣∣
xj+1

xj
+

∫ xn

x1

f (4)(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x+j)
(
h(xj+1)− h(xj)

)
,

where in the first line we used integration by parts; in the second we used the that
f ′′(a) = f ′′(b) = 0, and f ′′′(x) = 0 for x ≤ x1 and x ≥ xn, as f is a natural spline; in
the third we used integration by parts again; in the fourth line we used the fact that f ′′′

is constant on any open interval (xj , xj+1), j = 1, . . . , n− 1, and that f (4) = 0, again
because f is a natural spline. (In the above, we use f ′′′(u+) to denote limx↓u f

′′′(x).)
Finally, since h(xj) = 0 for all j = 1, . . . , n, we have

∫ 1

0
f ′′(x)h′′(x) dx = 0.

From this, it follows that
∫ 1

0
f̃ ′′(x)2 dx =

∫ 1

0

(
f ′′(x) + h′′(x)

)2
dx

=

∫ 1

0
f ′′(x)2 dx+

∫ 1

0
h′′(x)2 dx+ 2

∫ 1

0
f ′′(x)h′′(x) dx

=

∫ 1

0
f ′′(x)2 dx+

∫ 1

0
h′′(x)2 dx,

and therefore ∫ 1

0
f ′′(x)2 dx ≤

∫ 1

0
f̃ ′′(x)2 dx, (26)

with equality if and only if h′′(x) = 0 for all x ∈ [0, 1]. Note that h′′ = 0 implies that
h must be linear, and since we already know that h(xj) = 0 for all j = 1, . . . , n, this
is equivalent to h = 0. In other words, the inequality (45) holds strictly except when
f̃ = f , so the solution in (25) is uniquely a natural spline with knots at the inputs

10.5 Finite-dimensional form

• The key result presented above tells us that we can choose a basis η1, . . . , ηn for the set
of kth-order natural splines with knots over x1, . . . , xn, and reparametrize the problem
(38) as

β̂ = argmin
β∈Rn

n∑

i=1

(
yi −

n∑

j=1

βjηj(xi)
)2

+ λ

∫ 1

0

(n∑

j=1

βjη
(m)
j (x)

)2
dx. (27)

32

This is a finite-dimensional problem, and after we compute the coefficients β̂ ∈ Rn,
we know that the smoothing spline estimate is simply f̂(x) =

∑n
j=1 β̂jηj(x)

• Defining the basis matrix and penalty matrices N,Ω ∈ Rn×n by

Nij = ηj(xi) and Ωij =

∫ 1

0
η
(m)
i (x)η

(m)
j (x) dx for i, j = 1, . . . , n, (28)

the problem in (27) can be written more succintly as

β̂ = argmin
β∈Rn

‖y −Nβ‖22 + λβΩβ, (29)

showing the smoothing spline problem to be a type of generalized ridge regression
problem. In fact, the solution in (29) has the explicit form

β̂ = (NTN + λΩ)−1NT y,

and therefore the fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) are

µ̂ = N(NTN + λΩ)−1NT y. (30)

Therefore, once again, smoothing splines are a type of linear smoother

• A special property of smoothing splines: the fitted values in (30) can be computed in
O(n) operations. This is achieved by forming N from the B-spline basis (for natural
splines), and in this case the matrix NTN + ΩI ends up being banded (with a band-
width that only depends on the polynomial order k). In practice, smoothing spline
computations are extremely fast

10.6 Reinsch form

• It is informative to rewrite the fitted values in (30) is what is called Reinsch form,

µ̂ = N(NTN + λΩ)−1NT y

= N
(
NT
(
I + λ(NT)−1ΩN−1

)
N
)−1

NT y

= (I + λQ)−1y, (31)

where Q = (NT)−1ΩN−1

• Note that this matrix Q does not depend on λ. If we compute an eigendecomposition
Q = UDUT , then the eigendecomposition of S = N(NTN + λΩ)−1 = (I + λQ)−1 is

S =
n∑

j=1

1

1 + λdj
uju

T
j ,

where D = diag(d1, . . . , dn)

33

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x

E
ig

en
ve

ct
or

s

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number

E
ig

en
va

lu
es

1e−05
5e−05
1e−04
5e−04
0.001
0.005
0.01
0.05

Figure 7: Eigenvectors and eigenvalues for the Reinsch form of the cubic smoothing spline
operator, defined over n = 50 evenly spaced inputs on [0, 1]. The left plot shows the bottom
7 eigenvectors of the Reinsch matrix Q. We can see that the smaller the eigenvalue, the
“smoother” the eigenvector. The right plot shows the weights wj = 1/(1+λdj), j = 1, . . . , n
implicitly used by the smoothing spline estimator (32), over 8 values of λ. We can see that
when λ is larger, the weights decay faster, so the smoothing spline estimator places less
weight on the “nonsmooth” eigenvectors

• Therefore the smoothing spline fitted values are µ̂ = Sy, i.e.,

µ̂ =
n∑

j=1

uTj y

1 + λdj
uj . (32)

Interpretation: smoothing splines perform a regression on the orthonormal basis
u1, . . . , un ∈ Rn, yet they shrink the coefficients in this regression, with more shrinkage
assigned to eigenvectors uj that correspond to large eigenvalues dj

• So what exactly are these basis vectors u1, . . . , un? These are known as the Demmler-
Reinsch basis, and a lot of their properties can be worked out analytically (?). Ba-
sically: the eigenvectors uj that correspond to smaller eigenvalues dj are smoother,
and so with smoothing splines, we shrink less in their direction. Said differently, by
increasing λ in the smoothing spline estimator, we are tuning out the more wiggly
components. See Figure 7

10.7 Kernel smoothing equivalence

• Something interesting happens when we plot the rows of the smoothing spline matrix
S. For evenly spaced inputs, they look like the translations of a kernel! See Figure
8, left plot. For unevenly spaced inputs, the rows still have a kernel shape; now, the
bandwidth appears to adapt to the density of the input points: lower density, larger
bandwidth. See Figure 8, right plot

34

●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

x

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●

Row 25
Row 50
Row 75

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ● ●●● ●● ● ● ●

0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

x

● ● ● ●● ● ●●● ● ● ● ●● ●●●●●●●●●●●●●●●
●●

●●

●

●●
●●

●
●

●●●
●●

●
●

●

●●

●

●●

●

●

●●●
●●
●●●
●

●●

●●●●●●●● ●●●●●●●●●●● ●●●●●● ● ●●● ●● ● ● ●● ● ● ●● ● ●●● ● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

Row 5
Row 50
Row 95

Figure 8: Rows of the cubic smoothing spline operator S defined over n = 100 evenly spaced
input points on [0, 1]. The left plot shows 3 rows of S (in particular, rows 25, 50, and 75)
for λ = 0.0002. These look precisely like translations of a kernel. The right plot considers
a setup where the input points are concentrated around 0.5, and shows 3 rows of S (rows
5, 50, and 95) for the same value of λ. These still look like kernels, but the bandwidth is
larger in low-density regions of the inputs

• What we are seeing is an empirical validation of a beautiful asymptotic result by ?.
It turns out that the cubic smoothing spline estimator is asymptotically equivalent to
a kernel regression estimator, with an unusual choice of kernel. Recall that both are
linear smoothers; this equivalence is achieved by showing that under some conditions
the smoothing spline weights converge to kernel weights, under the “Silverman kernel”:

K(x) =
1

2
exp(−|x|/

√
2) sin(|x|/

√
2 + π/4), (33)

and a local choice of bandwidth h(x) = λ1/4q(x)−1/4, where q(x) is the density of the
input points. That is, the bandwidth adapts to the local distribution of inputs. See
Figure 9 for a plot of the Silverman kernel

• The Silverman kernel is “kind of” a higher-order kernel. It satisfies

∫
K(x) dx = 1,

∫
xjK(x) dx = 0, j = 1, . . . , 3, but

∫
x4K(x) dx = −24.

So it lies outside the scope of usual kernel analysis

• There is more recent work that connects smoothing splines of all orders to kernel
smoothing. See, e.g., ??.

35

899 SPLINES AND VARIABLE KERNELS

smoothing parameter A, but these dependences will not be expressed explicitly.
The main object of this paper is to investigate the form of G in order to establish
connections between spline smoothing and kernel (or convolution or moving
average) smoothing. These connections give insight into the behaviour of the
spline smoother and also show that splines should provide good results whether
or not the design points are uniformly spaced. For the special case of regularly
spaced design points, connections between spline and kernel smoothing have
been obtained by Cox (1983) and, under the additional assumption of periodicity,
by Cogburn and Davies (1974).

Our study of G will show that, under suitable conditions, the weight function
will be approximately of a form corresponding to smoothing by a kernel function
K with bandwidth varying according to the local density f of design points. The
kernel K is given by

A graph of K is given in Figure 1. The effective local bandwidth demonstrated
below is ~ l ' ~ f (t) - ' ' ~ asymptotically; thus the smoothing spline's behaviour is
intermediate between fixed kernel smoothing (no dependence on f) and smooth-
ing based on an average of a fixed number of neighbouring values (effective local
bandwidth proportional to l l f) . The desirability of this dependence on a low
power of f will be discussed in Section 3.

The paper is organized as follows. In Section 2 the main theorem is stated and
discussed. In addition, some graphs of actual weight functions are presented and
compared with their asymptotic forms. These show that the kernel approximation
of the weight function is excellent in practice. Section 3 contains some discussion

FIG.1. The effectiue kernel K .

Figure 9: The Silverman kernel in (33), which is the (asymptotically) equivalent implicit
kernel used by smoothing splines. Note that it can be negative. From ?

10.8 Error rates

• Define the Sobolev class of functions W1(m,C), for an integer m ≥ 0 and C > 0, to
contain all m times differentiable functions f : R→ R such that

∫ (
f (m)(x)

)2
dx ≤ C2.

(The Sobolev class Wd(m,C) in d dimensions can be defined similarly, where we sum
over all partial derivatives of order m.)

• Assuming f0 ∈ W1(m,C) for the underlying regression function, where C > 0 is a
constant, the smoothing spline estimator f̂ in (38) of polynomial order k = 2m − 1
with tuning parameter λ � n1/(2m+1) � n1/(k+2) satisfies

‖f̂ − f0‖2n . n−2m/(2m+1) in probability.

The proof of this result uses much more fancy techniques from empirical process theory
(entropy numbers) than the proofs for kernel smoothing. See Chapter 10.1 of van de
Geer (2000)

• This rate is seen to be minimax optimal over W1(m,C) (e.g., Nussbaum (1985)).
Also, it is worth noting that the Sobolev W1(m,C) and Holder H1(m,L) classes are
equivalent in the following sense: given W1(m,C) for a constant C > 0, there are
L0, L1 > 0 such that

H1(m,L0) ⊆W1(m,C) ⊆ H1(m,L1).

The first containment is easy to show; the second is far more subtle, and is a con-
sequence of the Sobolev embedding theorem. (The same equivalences hold for the
d-dimensional versions of the Sobolev and Holder spaces.)

36

10.9 Multivariate splines

• Splines can be extended to multiple dimensions, in two different ways: thin-plate
splines and tensor-product splines. The former construction is more computationally
efficient but more in some sense more limiting; the penalty for a thin-plate spline, of
polynomial order k = 2m− 1, is

∑

α1+...+αd=m

∫ ∣∣∣∣
∂mf(x)

∂xα1
1 xα2

2 . . . ∂xαdd

∣∣∣∣
2

dx,

which is rotationally invariant. Both of these concepts are discussed in Chapter 7 of
Green & Silverman (1994) (see also Chapters 15 and 20.4 of Gyorfi et al. (2002))

• The multivariate extensions (thin-plate and tensor-product) of splines are highly non-
trivial, especially when we compare them to the (conceptually) simple extension of
kernel smoothing to higher dimensions. In multiple dimensions, if one wants to study
penalized nonparametric estimation, it’s (argurably) easier to study reproducing ker-
nel Hilbert space estimators. We’ll see, in fact, that this covers smoothing splines
(and thin-plate splines) as a special case

37

References

Bellman, R. (1962), Adaptive Control Processes, Princeton University Press.

de Boor, C. (1978), A Practical Guide to Splines, Springer.

Devroye, L., Gyorfi, L., & Lugosi, G. (1996), A Probabilistic Theory of Pattern Recognition,
Springer.

Donoho, D. L. & Johnstone, I. (1998), ‘Minimax estimation via wavelet shrinkage’, Annals
of Statistics 26(8), 879–921.

Fan, J. (1993), ‘Local linear regression smoothers and their minimax efficiencies’, The An-
nals of Statistics pp. 196–216.

Fan, J. & Gijbels, I. (1996), Local polynomial modelling and its applications: monographs
on statistics and applied probability 66, Vol. 66, CRC Press.

Green, P. & Silverman, B. (1994), Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach, Chapman & Hall/CRC Press.

Gyorfi, L., Kohler, M., Krzyzak, A. & Walk, H. (2002), A Distribution-Free Theory of
Nonparametric Regression, Springer.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman and Hall.

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning;
Data Mining, Inference and Prediction, Springer. Second edition.

Johnstone, I. (2011), Gaussian estimation: Sequence and wavelet models, Under contract to
Cambridge University Press. Online version at http://www-stat.stanford.edu/~imj.

Kim, S.-J., Koh, K., Boyd, S. & Gorinevsky, D. (2009), ‘`1 trend filtering’, SIAM Review
51(2), 339–360.

Lin, Y. & Zhang, H. H. (2006), ‘Component selection and smoothing in multivariate non-
parametric regression’, Annals of Statistics 34(5), 2272–2297.

Mallat, S. (2008), A wavelet tour of signal processing, Academic Press. Third edition.

Mammen, E. & van de Geer, S. (1997), ‘Locally apadtive regression splines’, Annals of
Statistics 25(1), 387–413.

Nussbaum, M. (1985), ‘Spline smoothing in regression models and asymptotic efficiency in
l2’, Annals of Statistics 13(3), 984–997.

Raskutti, G., Wainwright, M. & Yu, B. (2012), ‘Minimax-optimal rates for sparse addi-
tive models over kernel classes via convex programming’, Journal of Machine Learning
Research 13, 389–427.

Ravikumar, P., Liu, H., Lafferty, J. & Wasserman, L. (2009), ‘Sparse additive models’,
Journal of the Royal Statistical Society: Series B 75(1), 1009–1030.

38

http://www-stat.stanford.edu/~imj

Scholkopf, B. & Smola, A. (2002), ‘Learning with kernels’.

Simonoff, J. (1996), Smoothing Methods in Statistics, Springer.

Steidl, G., Didas, S. & Neumann, J. (2006), ‘Splines in higher order TV regularization’,
International Journal of Computer Vision 70(3), 214–255.

Stone, C. (1985), ‘Additive regression models and other nonparametric models’, Annals of
Statistics 13(2), 689–705.

Tibshirani, R. J. (2014), ‘Adaptive piecewise polynomial estimation via trend filtering’,
Annals of Statistics 42(1), 285–323.

Tsybakov, A. (2009), Introduction to Nonparametric Estimation, Springer.

van de Geer, S. (2000), Empirical Processes in M-Estimation, Cambdrige University Press.

Wahba, G. (1990), Spline Models for Observational Data, Society for Industrial and Applied
Mathematics.

Wang, Y., Smola, A. & Tibshirani, R. J. (2014), ‘The falling factorial basis and its statistical
properties’, International Conference on Machine Learning 31.

Wasserman, L. (2006), All of Nonparametric Statistics, Springer.

Yang, Y. (1999), ‘Nonparametric classification–Part I: Rates of convergence’, IEEE Trans-
actions on Information Theory 45(7), 2271–2284.

39

Appendix: Locally adaptive estimators

10.10 Locally adaptive regression splines

Locally adaptive regression splines (Mammen & van de Geer 1997), as their name suggests,
can be viewed as variant of smoothing splines that exhibit better local adaptivity. For a
given integer order k ≥ 0, the estimate is defined as

m̂ = argmin
f

n∑

i=1

(
Yi −m(Xi)

)2
+ λTV(f (k)). (34)

The minimization domain is infinite-dimensional, the space of all functions for which the
criterion is finite

Another remarkable variational result, similar to that for smoothing splines, shows that
(34) has a kth order spline as a solution (Mammen & van de Geer 1997). This almost
turns the minimization into a finite-dimensional one, but there is one catch: the knots of
this kth-order spline are generally not known, i.e., they need not coincide with the inputs
x1, . . . , xn. (When k = 0, 1, they do, but in general, they do not)

To deal with this issue, we can redefine the locally adaptive regression spline estimator
to be

m̂ = argmin
f∈Gk

n∑

i=1

(
Yi −m(Xi)

)2
+ λTV(f (k)), (35)

i.e., we restrict the domain of minimization to be Gk, the space of kth-order spline functions
with knots in Tk, where Tk is a subset of {x1, . . . , xn} of size n−k−1. The precise definition
of Tk is not important; it is just given by trimming away k + 1 boundary points from the
inputs

As we already know, the space Gk of kth-order splines with knots in Tk has dimension
|Tk|+ k+ 1 = n. Therefore we can choose a basis g1, . . . , gn for the functions in Gk, and the
problem in (35) becomes one of finding the coefficients in this basis expansion,

β̂ = argmin
f∈Gk

n∑

i=1

(
Yi −

n∑

j=1

βjgj(Xi)
)2

+ λTV
{(n∑

j=1

βjgj(Xi)
)(k)}

, (36)

and then we have m̂(x) =
∑n

j=1 β̂jgj(x)
Now define the basis matrix G ∈ Rn×n by

Gij = gj(Xi), i = 1, . . . , n.

Suppose we choose g1, . . . , gn to be the truncated power basis. Denoting Tk = {t1, . . . , tn−k−1},
we compute

(n∑

j=1

βjgj(Xi)
)(k)

= k.+ k.

n∑

j=k+2

βj1{x ≥ tj−k−1},

and so

TV
{(n∑

j=1

βjgj(Xi)
)(k)}

= k.

n∑

j=k+2

|βj |.

40

Hence the locally adaptive regression spline problem (36) can be expressed as

β̂ = argmin
β∈Rn

‖y −Gβ‖22 + λk.
n∑

i=k+2

|βi|. (37)

This is a lasso regression problem on the truncated power basis matrix G, with the first k+1
coefficients (those corresponding to the pure polynomial functions, in the basis expansion)
left unpenalized

This reveals a key difference between the locally adaptive regression splines (37) (origi-
nally, problem (35)) and the smoothing splines (29) (originally, problem

m̂ = argmin
f

n∑

i=1

(
Yi −m(Xi)

)2
+ λ

∫ 1

0

(
f (m)(x)

)2
dx, where m = (k + 1)/2. (38)

In the first problem, the total variation penalty is translated into an `1 penalty on the
coefficients of the truncated power basis, and hence this acts a knot selector for the estimated
function. That is, at the solution in (37), the estimated spline has knots at a subset of Tk
(at a subset of the input points x1, . . . , xn), with fewer knots when λ is larger. In contrast,
recall, at the smoothing spline solution in (29), the estimated function has knots at each of
the inputs x1, . . . , xn. This is a major difference between the `1 and `2 penalties

From a computational perspective, the locally adaptive regression spline problem in (37)
is actually a lot harder than the smoothing spline problem in (29). Recall that the latter
reduces to solving a single banded linear system, which takes O(n) operations. On the other
hand, fitting locally adaptive regression splines in (37) requires solving a lasso problem with
a dense n × n regression matrix G; this takes something like O(n3) operations. So when
n = 10, 000, there is a big difference between the two.

There is a tradeoff here, as with extra computation comes much improved local adap-
tivity of the fits. See Figure 10 for an example. Theoretically, when m0 ∈ M(k,C) for a
constant C > 0, Mammen & van de Geer (1997) show the locally adaptive regression spline
estimator, denoted m̂lrs, with λ � n1/(2k+3), satisfies

‖m̂lrs −m0‖2n . n−(2k+2)/(2k+3) in probability,

so (like wavelets) it achieves the minimax optimal rate over n−(2k+2)/(2k+3). In this regard,
as we discussed previously, they actually have a big advantage over any linear smoother
(not just smoothing splines)

10.11 Trend filtering

At a high level, you can think of trend filtering as computationally efficient version of locally
adaptive regression splines, though their original construction (Steidl et al. 2006, Kim et al.
2009) comes from a fairly different perspective. We will begin by describing their connection
to locally adaptive regression splines, following Tibshirani (2014)

Revisit the formulation of locally adaptive regression splines in (35), where the mini-
mization domain is Gk = span{g1, . . . , gn}, and g1, . . . , gn are the kth-order truncated power
basis

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k+, j = 1, . . . , p.
(39)

41

●

●
●

●
●
●

●

●
●
●

●
●
●

●

●

●
●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

True function

●

●
●

●
●
●

●

●
●
●

●
●
●

●

●

●
●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Locally adaptive regression spline, df=19

●

●
●

●
●
●

●

●
●
●

●
●
●

●

●

●
●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Smoothing spline, df=19

●

●
●

●
●
●

●

●
●
●

●
●
●

●

●

●
●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Smoothing spline, df=30

Figure 10: The top left plot shows a simulated true regression function, which has inhomoge-
neous smoothness: smoother towards the left part of the domain, wigglier towards the right.
The top right plot shows the locally adaptive regression spline estimate with 19 degrees of
freedom; notice that it picks up the right level of smoothness throughout. The bottom left
plot shows the smoothing spline estimate with the same degrees of freedom; it picks up the
right level of smoothness on the left, but is undersmoothed on the right. The bottom right
panel shows the smoothing spline estimate with 33 degrees of freedom; now it is appropriately
wiggly on the right, but oversmoothed on the left. Smoothing splines cannot simultaneously
represent different levels of smoothness at different regions in the domain; the same is true
of any linear smoother

42

having knots in a set Tk ⊆ {X1, . . . Xn} with size |Tk| = n − k − 1. The trend filtering
problem is given by replacing Gk with a different function space,

m̂ = argmin
f∈Hk

n∑

i=1

(
Yi −m(Xi)

)2
+ λTV(f (k)), (40)

where the new domain is Hk = span{h1, . . . , hn}. Assuming that the input points are
ordered, x1 < . . . < xn, the functions h1, . . . , hn are defined by

hj(x) =

j−1∏

`=1

(x− x`), j = 1, . . . , k + 1,

hk+1+j(x) =
k∏

`=1

(x− xj+`) · 1{x ≥ xj+k}, j = 1, . . . , n− k − 1.

(41)

(Our convention is to take the empty product to be 1, so that h1(x) = 1.) These are dubbed
the falling factorial basis, and are piecewise polynomial functions, taking an analogous form
to the truncated power basis functions in (10.11). Loosely speaking, they are given by
replacing an rth-order power function in the truncated power basis with an appropriate
r-term product, e.g., replacing x2 with (x− x2)(x− x1), and (x− tj)k with (x− xj+k)(x−
xj+k−1) · . . . , (x− xj+1)

Defining the falling factorial basis matrix

Hij = hj(Xi), i, j = 1, . . . , n,

it is now straightforward to check that the proposed problem of study, trend filtering in
(40), is equivalent to

β̂ = argmin
β∈Rn

‖y −Hβ‖22 + λk.

n∑

i=k+2

|βi|. (42)

This is still a lasso problem, but now in the falling factorial basis matrix H. Compared to
the locally adaptive regression spline problem (37), there may not seem to be much of a
difference here—like G, the matrix H is dense, and solving (42) would be slow. So why did
we go to all the trouble of defining trend filtering, i.e., introducing the somewhat odd basis
h1, . . . , hn in (41)?

The usefulness of trend filtering (42) is seen after reparametrizing the problem, by
inverting H. Let θ = Hβ, and rewrite the trend filtering problem as

θ̂ = argmin
θ∈Rn

‖y − θ‖22 + λ‖Dθ‖1, (43)

where D ∈ R(n−k−1)×n denotes the last n − k − 1 rows of k. · H−1. Explicit calculation
shows that D is a banded matrix (Tibshirani 2014, Wang et al. 2014). For simplicity of
exposition, consider the case when Xi = i, i = 1, . . . , n. Then, e.g., the first 3 orders of
difference operators are:

D =

−1 1 0 . . .
0 −1 1 . . .
...

, D =

1 −2 1 0 . . .
0 1 −2 1 . . .
0 0 1 −2 . . .
..
.

, D =

−1 3 −3 1 . . .
0 −1 3 −3 . . .
0 0 −1 3 . . .
..
.

when k = 0 when k = 1 when k = 2.

43

●

●
●

●
●
●

●

●
●
●

●
●
●

●

●

●
●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●

●
●
●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10 Locally adaptive splines

Trend filtering

Figure 11: Trend filtering and locally adaptive regression spline estimates, fit on the same
data set as in Figure 10. The two are tuned at the same level, and the estimates are visually
indistinguishable

One can hence interpret D as a type of discrete derivative operator, of order k+ 1. This
also suggests an intuitive interpretation of trend filtering (43) as a discrete approximation
to the original locally adaptive regression spline problem in (34)

The bandedness ofD means that the trend filtering problem (43) can be solved efficiently,
in close to linear time (complexity O(n1.5) in the worst case). Thus trend filtering estimates
are much easier to fit than locally adaptive regression splines

But what of their statistical relevancy? Did switching over to the falling factorial basis
(41) wreck the local adaptivity properties that we cared about in the first place? Fortu-
nately, the answer is no, and in fact, trend filtering and locally adaptive regression spline
estimates are extremely hard to distinguish in practice. See Figure 11

Moreover, Tibshirani (2014), Wang et al. (2014) prove that the estimates from trend
filtering and locally adaptive regression spline estimates, denoted m̂tf and m̂lrs, respectively,
when the tuning parameter λ for each scales as n1/(2k+3), satisfy

‖m̂tv − m̂lrs‖2n . n−(2k+2)/(2k+3) in probability.

This coupling shows that trend filtering converges to the underlying function m0 at the rate
n−(2k+2)/(2k+3) whenever locally adaptive regression splines do, making them also minimax
optimal over M(k,C). In short, trend filtering offers provably significant improvements
over linear smoothers, with a computational cost that is not too much steeper than a single
banded linear system solve

44

10.12 Proof of (9)

Let

mh(x) =

∑n
i=1m(Xi)I(‖Xi − x‖ ≤ h)

nPn(B(x, h))
.

Let An = {Pn(B(x, h)) > 0}. When An is true,

E

(
(m̂h(x)−mh(x))2

∣∣∣∣∣ X1, . . . , Xn

)
=

∑n
i=1 Var(Yi|Xi)I(‖Xi − x‖ ≤ h)

n2P 2
n(B(x, h))

≤ σ2

nPn(B(x, h))
.

Since m ∈M, we have that |m(Xi)−m(x)| ≤ L‖Xi− x‖ ≤ Lh for Xi ∈ B(x, h) and hence

|mh(x)−m(x)|2 ≤ L2h2 +m2(x)IAn(x)c .

Therefore,

E
∫

(m̂h(x)−m(x))2dP (x) = E
∫

(m̂h(x)−mh(x))2dP (x) + E
∫

(mh(x)−m(x))2dP (x)

≤ E
∫

σ2

nPn(B(x, h))
IAn(x)dP (x) + L2h2 +

∫
m2(x)E(IAn(x)c)dP (x). (44)

To bound the first term, let Y = nPn(B(x, h)). Note that Y ∼ Binomial(n, q) where
q = P(X ∈ B(x, h)). Now,

E
(
I(Y > 0)

Y

)
≤ E

(
2

1 + Y

)
=

n∑

k=0

2

k + 1

(
n
k

)
qk(1− q)n−k

=
2

(n+ 1)q

n∑

k=0

(
n+ 1
k + 1

)
qk+1(1− q)n−k

≤ 2

(n+ 1)q

n+1∑

k=0

(
n+ 1
k

)
qk(1− q)n−k+1

=
2

(n+ 1)q
(q + (1− q))n+1 =

2

(n+ 1)q
≤ 2

nq
.

Therefore,

E
∫

σ2IAn(x)

nPn(B(x, h))
dP (x) ≤ 2σ2

∫
dP (x)

nP (B(x, h))
.

We may choose points z1, . . . , zM such that the support of P is covered by
⋃M
j=1B(zj , h/2)

where M ≤ c2/(nhd). Thus,

∫
dP (x)

nP (B(x, h))
≤

M∑

j=1

∫
I(z ∈ B(zj , h/2))

nP (B(x, h))
dP (x) ≤

M∑

j=1

∫
I(z ∈ B(zj , h/2))

nP (B(zj , h/2))
dP (x)

≤ M

n
≤ c1
nhd

.

45

The third term in (44) is bounded by

∫
m2(x)E(IAn(x)c)dP (x) ≤ sup

x
m2(x)

∫
(1− P (B(x, h)))ndP (x)

≤ sup
x
m2(x)

∫
e−nP (B(x,h))dP (x)

= sup
x
m2(x)

∫
e−nP (B(x,h))nP (B(x, h))

nP (B(x, h))
dP (x)

≤ sup
x
m2(x) sup

u
(ue−u)

∫
1

nP (B(x, h))
dP (x)

≤ sup
x
m2(x) sup

u
(ue−u)

c1
nhd

=
c2
nhd

.

10.13 Proof of the Spline Lemma

The key result can be stated as follows: if f̃ is any twice differentiable function on [0, 1],
and x1, . . . , xn ∈ [0, 1], then there exists a natural cubic spline f with knots at x1, . . . , xn
such that m(Xi) = f̃(Xi), i = 1, . . . , n and

∫ 1

0
f ′′(x)2 dx ≤

∫ 1

0
f̃ ′′(x)2 dx.

Note that this would in fact prove that we can restrict our attention in (25) to natural
splines with knots at x1, . . . , xn.

The natural spline basis with knots at x1, . . . , xn is n-dimensional, so given any n points
zi = f̃(Xi), i = 1, . . . , n, we can always find a natural spline f with knots at x1, . . . , xn that
satisfies m(Xi) = zi, i = 1, . . . , n. Now define

h(x) = f̃(x)−m(x).

Consider

∫ 1

0
f ′′(x)h′′(x) dx = f ′′(x)h′(x)

∣∣∣
1

0
−
∫ 1

0
f ′′′(x)h′(x) dx

= −
∫ xn

x1

f ′′′(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x)h(x)
∣∣∣
xj+1

xj
+

∫ xn

x1

f (4)(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x+j)
(
h(xj+1)− h(xj)

)
,

where in the first line we used integration by parts; in the second we used the that f ′′(a) =
f ′′(b) = 0, and f ′′′(x) = 0 for x ≤ x1 and x ≥ xn, as f is a natural spline; in the third we
used integration by parts again; in the fourth line we used the fact that f ′′′ is constant on
any open interval (xj , xj+1), j = 1, . . . , n−1, and that f (4) = 0, again because f is a natural

46

spline. (In the above, we use f ′′′(u+) to denote limx↓u f
′′′(x).) Finally, since h(xj) = 0 for

all j = 1, . . . , n, we have ∫ 1

0
f ′′(x)h′′(x) dx = 0.

From this, it follows that

∫ 1

0
f̃ ′′(x)2 dx =

∫ 1

0

(
f ′′(x) + h′′(x)

)2
dx

=

∫ 1

0
f ′′(x)2 dx+

∫ 1

0
h′′(x)2 dx+ 2

∫ 1

0
f ′′(x)h′′(x) dx

=

∫ 1

0
f ′′(x)2 dx+

∫ 1

0
h′′(x)2 dx,

and therefore ∫ 1

0
f ′′(x)2 dx ≤

∫ 1

0
f̃ ′′(x)2 dx, (45)

with equality if and only if h′′(x) = 0 for all x ∈ [0, 1]. Note that h′′ = 0 implies that h must
be linear, and since we already know that h(xj) = 0 for all j = 1, . . . , n, this is equivalent to
h = 0. In other words, the inequality (45) holds strictly except when f̃ = f , so the solution
in (25) is uniquely a natural spline with knots at the inputs.

47

	Introduction
	Basic setup
	Fixed or random inputs?
	Notation
	Bias-Variance Tradeoff
	What does ``nonparametric'' mean?
	What we cover here
	Holder Spaces and Sobolev Spaces

	k-nearest-neighbors regression
	Curse of dimensionality

	Kernel Smoothing and Local Polynomials
	Kernel smoothing
	Error Analysis
	Local Linear Regression
	Higher-order smoothness

	Splines
	Error rates

	Mercer kernels, RKHS
	Hilbert Spaces
	Evaluation Functional
	Nonparametric Regression
	Mercer Kernels
	The Reproducing Property
	Examples
	Spectral Representation
	Representer Theorem
	RKHS Regression
	Logistic Regression
	Support Vector Machines
	The Kernel Trick
	Hidden Tuning Parameters

	Linear smoothers
	Definition
	Cross-validation

	Additive models
	Motivation and definition
	Backfitting
	Error rates
	Sparse additive models

	Variance Estimation and Confidence Bands
	Wavelet smoothing
	The strengths of wavelets, the limitations of linear smoothers

	More on Splines: Regression and Smoothing Splines
	Splines
	Regression splines
	Natural splines
	Smoothing splines
	Finite-dimensional form
	Reinsch form
	Kernel smoothing equivalence
	Error rates
	Multivariate splines
	Locally adaptive regression splines
	Trend filtering
	Proof of (9)
	Proof of the Spline Lemma

