
Random Matrix Theory

These notes are based on the following sources:

1. Introduction to the Non-asymptotic Analysis of Random Matrices by Roman Vershynin.

2. Error Bounds for Random Matrix Approximation Schemes by A. Gittens and J. Tropp.

Another excellent source is:
Topics in Random Matrix Theory by Terence Tao.

These can be found online.

Let X1, . . . , Xn ∼ P where Xi ∈ Rd. Without loss of generality, assume that µ = 0. Let
Σ = Var(Xi) and

Σ̂ =
1

n

∑
i

XiX
T
i =

1

n
ATA

where A is the n × d data matrix. Our goal is to show that Σ̂ is close to Σ. This implies
that the eigenvalues and eigenvectors of of Σ̂ are close to eigenvalues and eigenvectors of Σ.
Unless we say otherwise, we will assume that d < n.

1 Review of Singular Values

Let A be an n × d matrix with n ≥ d. Recall that the singular values are the square roots
of the eigenvalues of ATA. These are denoted by s1(A) ≥ s2(A) ≥ · · · ≥ sd(A) ≥ 0. We
also let smax(A) = s1(A) and smin(A) = sd(A). We will also write the singular values as
s1 ≥ · · · ≥ sd. The singular value decomposition of A is

A = UDV T (1)

where D is n × d and diagonal with the singular values on the diagonal, U is n × n, V is
d× d and UTU = I and V TV = I. The columns of U are the eigenvectors of AAT and the
columns of V are the eigenvectors of ATA.

The spectral norm (or operator norm) of A is

‖A‖ = ‖A‖2→2 = sup
‖x‖2=1

‖Ax‖2 = s1(A) = max
u∈Sd,v∈Sn

〈Au, v〉. (2)

If A is a symmetric d× d matrix, we have

||A||2 = s21(A) = λ1(A
TA) = max

||u||=1
uTATAu = max

||u||=1
||Au||2
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and so
||A|| = max

||u||=1
||Au||.

Throughout these notes, ‖x‖ denotes the L2 norm if x is a vector and ‖A‖ denotes the
spectral norm if A is a matrix. For any x,

sd(A)‖x‖ ≤ ‖Ax‖ ≤ s1(A)‖x‖. (3)

(Note: these are all L2 norms.) Hence, if s1(A) ≈ sd(A) then A is almost an isometry. Matri-
ces that are close to being isometries are important in many algorithms such as compressed
sensing. Thus, it is of interest to bound the singular values. Specifically, we want to show
that √

n− C
√
d ≤ sd ≤ s1 ≤

√
n+ C

√
d (4)

or, equivalently,

1− C
√
d

n
≤ sd(n

−1/2A) ≤ s1(n
−1/2A) ≤ 1 + C

√
d

n
.

The following lemma is useful.

Lemma 1 Let B be a symmetric d× d matrix. If∥∥BTB − I
∥∥ ≤ max{δ, δ2} (5)

then
1− δ ≤ sp(B) ≤ s1(B) ≤ 1 + δ. (6)

Conversely, if (6) holds then
∥∥BTB − I

∥∥ ≤ 3 max{δ, δ2}.

From the lemma, we see that (4) implies that ATA/n is approximately the identity matrix.
Specifically, if (4) holds, then, with B = A/

√
n,

1− δ = 1− C
√
d

n
≤ sp(B) ≤ s1(B) ≤ 1 + C

√
d

n
= 1 + δ

and the lemma implies that∥∥∥∥ 1

n
ATA− I

∥∥∥∥ ≤ ε where ε = max{δ, δ2} and δ = O(
√
d/n). (7)

To see why this is useful, suppose that each row Xi of A is a d-dimension sample from a
distribution with mean 0 and covariance Σ = I. Then the above implies that

||Σ̂− Σ|| ≤ ε

where Σ̂ = n−1ATA. (If the mean is not 0, we can just subtract it off.) More generally, if
Xi has covariance Σ, define Wi = Σ−1/2Xi. Then Wi has covariance I. Let W be the matrix
whose ith row is Wi. Then, A = WΣ1/2 and so

||Σ̂− Σ|| = ||Σ1/2(n−1WTW− I)Σ1/2|| ≤ ||Σ|| ||n−1WTW− I|| ≤ ε||Σ||.
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2 Gaussian Matrices

Suppose first that A is an n× d matrix of independent, standard Normal random variables.
We will need the following results:

Lemma 2 (The Sudakov-Fernique Inequality.) Let Xt and Yt be Gaussian processes with
the same mean. If

E|Xs −Xt|2 ≤ E|Ys − Yt|2

for all s, t then E suptXt ≤ E supt Yt.

Lemma 3 Let X ∼ Nd(0, I). Let f : Rd → R be K-Lipschitz. Then for every t ≥ 0,

P
(
f(X)− E[f(X)] > t

)
≤ e−t

2/(2K2).

The Sudakov-Fernique inequality seems quite intuitive but its proof is non-trivial. See Ran-
dom Fields and Geometry by Adler and Taylor (2000).

Theorem 4 We have
√
n−
√
d ≤ E(sd) ≤ E(s1) ≤

√
n+
√
d.

Furthermore,

P
(√

n−
√
d− t ≤ sd ≤ s1 ≤

√
n+
√
d+ t

)
≥ 1− 2e−t

2/2.

Proof. Let Sk = {x = (x1, . . . , xk) : ‖x‖ = 1}. Then

s1 = max
u∈Sd,v∈Sn

〈Au, v〉.

Let Xu,v = 〈Au, v〉. Note that Xu,v is a Gaussian process indexed by u and v. Let Yu,v =
〈Z, u〉+〈W, v〉 where Z ∈ Rp and W ∈ RN are standard normal vectors. Some algebra shows
that,

E|Xu,v −Xu′,v′|2 ≤ E|Yu,v − Yu′,v′ |2

for any u, v, u′, v′. It follows from the Sudakov-Fernique inequality that

E sup
u,v

Xu,v ≤ E sup
u,v

Yu,v.

Now
Yu,v ≤ ‖Z‖+ ‖W‖

and so
E sup

u,v
Yu,v ≤

√
n+
√
d.

Thus E(s1) ≤
√
n +
√
d. A similar proof shows that

√
n −
√
d ≤ E(sd). The second result

follows from Lemma 3 since s1 and sd are 1-Lipschitz (where A is regarded as one long
vector). �
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3 Independent Rows

Suppose now that the rows of A are independent vectors. This is more general than assuming
that all the entries are independent. We will also relax the Gaussian assumption.

Recall that a mean 0 random variable X is sub-Gaussian if, for all t ≥ 0,

P(|X| > t) ≤ e−t
2/C

for some C. This is equivalent to
EetX ≤ ect

2

.

A random vector X is sub-Gaussian if

EetTX ≤ ect
2

.

Theorem 5 Let A be n × d and suppose that the rows Ai are independent, sub-Gaussian
random vectors with identity covariance. Then there are constants c, C > 0 such that, for
all t ≥ 0,

P
(√

n− C
√
d− t ≤ sd ≤ s1 ≤

√
n+ C

√
d+ t

)
≥ 1− 2e−ct

2

.

Also, ∥∥∥∥ 1

n
ATA− I

∥∥∥∥ ≤ ε

where ε = max{δ, δ2} and

δ = C

√
d

n
+

t√
n
.

Proof. From (7) it suffices to show the second statement. The covering number of Sd is
bounded by (

1 +
2

a

)d
.

Let a = 1/2. We can thus cover Sd with a a-net N using 5d points. Recall that, for any
symmetric d× d matrix B we have

||B|| = sup
|u||=1

||Bu||.

Every u ∈ Sd can be written as u = v + w where v ∈ N and ||w|| ≤ a. So

‖B‖ = sup
u∈Sd

||Bu|| ≤ sup
v∈N
||Bv||+ sup

||w||≤1/2
||Bw||.
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But sup||w||≤1/2 ||Bw|| = (1/2)||B||. So

||B|| ≤ sup
v∈N
||Bv||+ (1/2)||B||

which implies that
||B|| ≤ 2 sup

v∈N
||Bv||.

Hence,

||Σ̂− Σ|| =
∥∥∥∥ 1

n
ATA− I

∥∥∥∥ ≤ 2 max
u∈N

∣∣∣〈( 1

n
ATA− I

)
u, u
〉∣∣∣ = 2 max

u∈N

∣∣∣∣ 1n‖Au‖2 − 1

∣∣∣∣ . (8)

Let Zi = 〈Ai, u〉. Then Z1, . . . , Zn are independent, sub-Gaussian with E(Z2
i ) = 1. Further-

more,

‖Au‖2 =
n∑
i=1

〈Ai, u〉2 =
n∑
i=1

Z2
i .

Since the Zi are sub-Gaussian, we can use a Chernoff-like concentration argument to get
that

P
(∣∣∣∣ 1n‖Au‖2 − 1

∣∣∣∣ ≥ ε

2

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

Z2
i − 1

∣∣∣∣∣ ≥ ε

2

)
≤ 2 exp

(
−c(Cd+ t2)

)
.

From the union bound, and choosing C large enough,

P
(

max
u∈N

∣∣∣∣ 1n‖Au‖2 − 1

∣∣∣∣ ≥ ε

2

)
≤ 5d 2 exp

(
−c(Cd+ t2)

)
≤ 2e−c

′t2 .

�

4 Back to Covariance Matrices

Let Xi be the ith row of A. The last theorem said that if Xi ∼ N(0, I) then, with high
probability, ∥∥∥∥ 1

n
ATA− I

∥∥∥∥ ≤ ε

where ε = max{δ, δ2} and

δ = C

√
d

n
+

t√
n
.

If instead, Xi ∼ N(0,Σ), then we get that Σ̂ = n−1ATA is close to Σ instead of being close
to I, as we saw earlier. Using Weyl’s theorem and the Dvais-Kahan theorem, this means
that the eigenvalues and eigenvectors of Σ̂ are close to those of Σ.

If d > n, these results fail and different techniques (and stronger assumptions) are needed.
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5 Restricted Isometries and Compressed Sensing

Recall that compressed sensing is basically just the lasso except that we get to generate the
design matrix. That is, we observe

Y = Xβ + ε

where X is n × p with n < p. We want to recover β from Y . We take advantage of two
facts: β is assumed to be sparse and we get to generate X randomly. Recovering a sparse β
is possible if X satisfies a restricted isometry condition.

We say that a matrix A satisfies the restricted isometry property (of order k) if there exists
δk ≥ 0 such that

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2 (9)

for all x ∈ Rp for which ‖x‖0 ≤ k. Let δk = δk(A) be the smallest such number. It can be
shown that

δk = max
T : |T |=k

‖ATTAT − I‖.

Lemma 6 If δk ≤ max{δ, δ2} then

1− δ ≤ smin(AT ) ≤ smax(AT ) ≤ 1 + δ for all |T | ≤ k. (10)

Conversely, if (10) holds then, δk ≤ 3 max{δ, δ2}.

Theorem 7 Let A be an n × p matrix with independent, sub-Gaussian rows. Let X =
n−1/2A. For every 0 < δ < 1, and 1 ≤ k ≤ n, if

n � k log(ep/k)

δ2

then
P
(
δk(X) ≤ δ

)
≥ 1− 2e−cδ

2n.

Proof. Fix T ⊂ {1, . . . , p} such that |T | = k. From the earlier results,

√
n−
√
k − s ≤ smin(AT ) ≤ smax(AT ) ≤

√
n+
√
k + s

with probability at least 1− 2e−cs
2
. Hence∣∣∣∣∣∣∣∣ 1nATTAT − I

∣∣∣∣∣∣∣∣ = ‖XT
TXT − I‖ ≤ 3 max{δ0, δ20} where δ0 =

√
k

n
+

s√
n
.

The number of such subsets T is
(
p
k

)
≤ (ep/k)k. By the union bound,

max
|T |=k

‖XT
TXT − I‖ ≤ 3 max{δ0, δ20}
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except on a set of probability at most

2
(ep
k

)
e−cs

2

= 2 exp
(
k log

(ep
k

)
− cs2

)
.

Pick ε > 0 and let
s = c1

√
k log(ep/k) + ε

√
p.

Then 3 max{δ0, δ20} < 2δ and so δk ≤ 2δ with probability at least 1− 2e−c
′ε2n = 1− 2e−cδ

2n.
�

6 Sparsification

We have concentrated on the spectral norm but other norms are also of interest. In particular,
Gittens and Tropp study the norm

‖A‖∞→p = max
u6=0

‖Au‖p
‖u‖∞

.

To see why this norm might be of interest, consider a graph G = (V,E) and weights wjk.
Recall that a cut partitions the vertices V = S ∪ Sc. The cost of a cut is the sum of weights
of edges with one vertex in S and one vertex in Sc. Finding the maximum cut corresponds
to finding the cut-norm

‖A‖C = max
S⊂E

∣∣∣∣∣ ∑
(j,k)∈E

wjkI(j ∈ S)I(k ∈ Sc)

∣∣∣∣∣.
It is very difficult to work with ‖A‖C . However,

‖A‖C ≤ ‖A‖∞→1 ≤ 4‖A‖C .

Hence, it is useful to bound the norm ‖A‖∞→1. We will state a bound from Gittens and
Tropp without proof and then we’ll discuss an application. The application involves finding
a random sparse approximating matrix X.

Theorem 8 (Gittens and Tropp.) Let A be an m × n matrix. Let X be a random matrix
with independent entries such that E(X) = A. Suppose that |Xjk| ≤ D/2 for all j and k.
Finally, let ε1, ε2, . . . be Rademacher random variables. Let Z = A − X and define q by
(1/p) + (1/q) = 1. Then:

1. The mean is bounded by:

E‖Z‖∞→p ≤ 2E
∥∥∥∑

k

εkzk

∥∥∥
p

+ 2 max
‖u‖q=1

E
∑
k

∣∣∣∑
j

εjZjkuj

∣∣∣.
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2. Concentration around the mean:

P (‖Z‖∞→p > E‖Z‖∞→p + t) ≤ exp

(
− t2

4D2nm2

)
.

3. The special case p = 1:

E‖Z‖∞→1 ≤ 2

∑
k

(∑
j

Var(Xjk)

)1/2

+
∑
j

(∑
k

Var(Xjk)

)1/2
 .

Let us apply the theorem to the an example. Let A be an n × n matrix with bounded,
positive entries. Let X be a sparsification of A defined by

Xjk ∼ AjkB/p

where B ∼ Bernoulli(p). Then Var(Xjk) = A2
jk/p− A2

jk. It follows that

2

[∑
k

(∑
j Var(Xjk)

)1/2
+
∑

j (
∑

k Var(Xjk))
1/2

]
‖A‖∞→1

= O

(√
1− p
np

)
.

Set p = (1 + nγ2)−1. We get that E‖A−X‖∞→1 < γ and the expected number of nonzero
entries is O(n/γ2).
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