10-702 Statistical Machine Learning: Assignment 6
Due Friday, May 9

(1) (Principal Curves)
(a) Generate data as follows:

sigma = 0.01

n = 100
y = seq(0,1,length=n) + rnorm(n, 0, sigma)
x = cos(5*pixy) + rnorm(n,0, sigma)

Plot y versus z. Fit a principal curve. (You can use the R function for this.) Try different smoothing
parameters. Now repeat with 0 = 0.1. Report the training error in each case.

(2) (Spectral Clustering)
Use the following code to generate data:

th = seq(0,2xpi, length=150)

X = c(cos(th),1l1.5%cos(th),2*cos (th))
y = c(sin(th),1.5*sin(th),2*xsin(th))
X = cbind(x,y)

plot (X[,1],X[,2])

Use spectral clustering to cluster the data. Choose a bandwidth A and an integer m. Construct
the spectral eigenvectors vy, vo, ... as we discussed in class. Define new data 7, ..., Z,, where
Z; = (v1(1),...,v,(1))T. Apply k-means clustering to the Z;’s with k = 3. Experiment with
different values of h and m. Summarize your results.



(3) Kernels
Let

fz{fi ||f||K§B}

where K is a Mercer kernel. Recall that K (x,y) = (¢(x), ¢(y)) where

() = (61(2), 2(2), ...) = (VM (), VAot (), - )

where 11, 15, . . . are the eigenfunctions of K.

(@) If f € F we can write f(z) = >, ;K (z;,x). We can also write f = >_.3;¢;. Show that
Be =D ihe(y).

(b) Show that || f||x < B implies that ||3|| < B.

(c) Show that the Rademacher complexity satisfies

R (F) < B\/g

where x = sup, K(z,z). Hint: Write f = . 3;¢;. Take the definition of R,(F) and apply the
Cauchy-Schwarz inequality.

Comment: Part (c), toegether with McDiarmid’s inequality shows that
log(2/0
P (P(f) < Pu(f) +B\/E+ \/#, for all f € f) >1-4.
n n

(d) Here we will compare “smoothing kernel regression” and ‘“Mercer kernel” regression. De-
fine

(x +2)?/2 —-1<2z<-05
m(z) = x/2+ 0.875 -05<z<0

—5(z —0.2)2+1.075 0<z <05

x4+ 0.125 0.5 <z <1

Let
o(x) =0.2 —0.1cos(2mz).

Generate X7, ..., X, uniformly on [—1, 1] where n = 200. Then take
Yi=m(X)+o(Xie, i=1,...,n

where ¢; ~ N(0,1). Use a Gaussian kernel. Compare the best “smoothing kernel” fit and the best
“Mercer kernel” fit. Choose the degree of regularization by GCV.



(4) Bayesian inference and MCMC

Consider the following Bayesian regression model:

D
Yi = E Bixij + €
Jj=1
where ¢+ = 1,...,n, the noise is

e~ N(0,1/pe)

and the prior for the parameters is:
Bj ~ N(07 1/p/3)

Assume the precisions have exponential priors:
pe ~ Expon(}) = Aexp{—Ap}

ps ~ Expon(A\) = Aexp{—\ps}
To keep things simple, we’ll assume D = 1, and A = 1.

(a) Draw 1000 samples from the prior predictions for y at x = 1:

pyilra =1, A =1),

display a histogram of the samples and compute the mean and variance of the samples.

(b) Consider a data set of n = 3, (x,y) pairs, D = {(0,0),(2,2.1),(3,3)}. Derive the Gibbs
sampling updates for:

P(pe, pa, B1|D, A = 1)

In other words, derive the distribution of each of the above 3 variables being sampled, conditional
on the other variables (you will need to use Gamma distributions for the ps).

(c) Write code that will implement a Gibbs sampler to draw samples from p(p., ps, 51|D, A = 1).
Plot traces of these variables as a function of sampling iteration. Discuss how many iterations are
needed for “burn in” and “convergence”. Display histograms of the three variables, and also of
p(yilzin = 1, D, A = 1). Are the results reasonable?



