
10-702 Statistical Machine Learning: Assignment 1
Due Friday, January 25

Hand in to Diane Stidle, WH 4609 by 3:00. Use R for all numerical computations.

1. Let Θ be a finite set. Let L(θ, θ̂) = 0 if θ = θ̂ and L(θ, θ̂) = 1 otherwise. Show the that
posterior mode is the Bayes estimator.

2. Let X ∼ N(θ, 1). Suppose that θ ∈ Θ = [−C,C] where C = 1/2. Assume squared error
loss.

(a) Verify that θ̂ = C tanh(CX) is minimax. Hint: Show that θ̂ is the Bayes estimator
under the prior π = (1/2)δ−C + (1/2)δC where δa denotes a distribution that puts
probability 1 at a. You may assume that R(θ, θ̂) has the following properties: it is
continuous, symmetric about 0 and increasing on [0, c].

(b) Find the mle (maximum likelihood estimator) θ̂.

(c) Find the risk of the mle.

(d) Plot the risk functions of these two estimators.

3. Let X ∼ Binomial(n, θ).

(a) Find a minimax estimator. Hint: Consider a Bayes estimator based on a beta prior.

(b) Plot the risk of the the minimax estimator, the mle and the Bayes estimator using a flat
prior, for n = 5, 50, 100.

4. In class, we outlined the proof that X is minimax when X ∼ N(θ, 1) and θ ∈ R. Fill in the
details.

5. This question will help you explore the differences between Bayesian and frequentist in-
ference. Let X1, . . . , Xn be a sample from a multivariate Normal distribution with mean
µ = (µ1, . . . , µp)

T and covariance matrix equal to the identity matrix I . Note that each Xi

is a vector of length p.
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The following facts will be helpful. If Z1, . . . , Zk are independent N(0, 1) and a1, . . . , ak
are constants, then we say that Y =

∑p
j=1(Zj + aj)

2 has a non-central χ2 distribution with
k degrees of freedom and noncentrality parameter ||a||2. The mean and variance of Y are
k + ||a||2 and 2k + 4||a||2.

(a) Find the posterior under the improper prior π(µ) = 1.

(b) Let θ =
∑p

j=1 µ
2
j . Our goal is to learn θ. Find the posterior for θ. Express your answers

in terms of noncentral χ2 distributions. Find the posterior mean θ̃.

(c) The usual frequentist estimator is θ̂ = ||Xn||2 − p/
√
n. Show that, for any n,

Eθ||θ − θ̃||2

Eθ||θ − θ̂||2
→∞

as p→∞.

(d) Repeat the analysis with a N(0, τ 2I) prior.

(e) Set n = 10, p = 1000, θ = (0, . . . , 0)T . Simulate (in R) data N times, with N = 1000.
Draw a histogram of the Bayes estimator (with flat prior) and the frequentist estimator.

(e) Interpret your findings.

6. The following is a list of some loss functions commonly used for large-margin classification
algorithms. For each loss function φ(x) determine whether φ is a convex function, then
calculate and plot its conjugate φ∗ (together with φ).

(a) Exponential loss: φ(x) = exp(−x)

(b) Truncated quadratic loss: φ(x) = [max(1− x, 0)]2

(c) Hinge loss: φ(x) = max(1− x, 0)

(d) Sigmoid loss: φ(x) = 1− tanh(κx), for fixed κ > 0
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