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10702/36702 Statistical Machine Learning, Spring 2008
Homework 2 Solutions

February 20, 2008

[15 points]
Let m, be a sequence of priors and 0,, the corresponding Bayes estimators. Suppose that
/ R(0,0,)m,(0)d0 — ¢

for some finite ¢. Suppose that 6 is an estimator such that

stép R(0,0) <c
Show that 6 is minimax.
% SOLUTION: For any estimator T'
sgp R(O,T) > /R(H,T)ﬂ'n(@)cw
> / R(0, 6,7, (0)db
Let n goes to infinity on both sides of the inequality, we have

lim sup R(0,T) =sup R(0,T) > lim [ R(6,0,)m,(0)d6 = ¢ > sup R(6,0)
0 0

n—oo 0 n—oo

Therefore, 8 is minimax.

Let X ~ N(0,1). Show that 6 = X is minimax.
Hint: Let 7, be N(0,n). Check that

/ R(0,0,)m,(0)d0 — 1
Next show that R(f, X) = 1. Consider from part (a) that X is minimax.

% SOLUTION: Let 7, be N(0,n). The posterior distribution

r—0)2 2
701X = ) oc exp(~ T exp (-
RES -



Therefore, m(0|X = x) ~ N(;45X, 47), and the Bayes estimator 0, = 47X The risk

B B ~ - 92 + n2
= — 2 = — 2 = —

The Bayes risk

/R(9 6, ), (0)d0 / 040’ exp(gy),  nkn’
n ﬂ'n = . = =
’ (n+1)2 2mn m+12 n+l

Therefore, as n — oo, the Bayes risk goes to 1. On the other hand,
R(,X) = (Eg(X) —60)* + VargX =1

Therefore, supy R(6, X) = 1. According to (a), X is minimax.

2 [16 points|

The following is a list of some loss functions commonly used for large-margin classification algorithms. For
each loss function ¢(x) determine whether ¢ is a convex function, and then calculate its conjugate ¢*. Plot

¢ and ¢*.

(a) Exponential loss: ¢(z) = exp(—2)

* SOLUTION: ¢"(z) = exp(—z) = 0 Vz. Hence ¢(x) is convex.
Conjugate function: ¢*(y) = sup, (zy — exp(—x)).

For y > 0, ¢*(y) is unbounded.

Fory =0, ¢*(y) =0.

Fory <0, %(Iy —exp(—z)) =y — exp(—z) = 0.

Or, z* = —log(—y). Substituting x, we get ¢*(y) = —ylog(—y) + v.

oo y>0
P (y) = 0 y=0
—ylog(—y)+vy y <0

phi(x) phi*(x)
@
: - = o
< >
i - S
o S
3 < -
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S | — |
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-1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0

(b) Truncated quadratic loss: ¢(z) = [max(1 — z,0)]?



% SOLUTION: 1 —z and 0 are both convex. Hence max|[(1 — z), 0] is also convex. Square of convex
function also convex. Hence ¢(z) convex.

Conjugate computation:
For y > 0, ¢*(y) is unbounded since z* — oc.

Consider y < 0. Then for x < 1 we have ¢(z) = (1 — x)? and ¢*(y) = sup(zy — (1 — x)?). To find the
maximum we differentiate to get y +2(1 — x) = 0 or 2* = 1 4 y/2. Substituting for = in ¢*(y) we get
*(y) = (1 +y/2)y —y*/4 =y*/4 +y. For x > 1, the conjugate is unbounded.

Hence we have the conjugate as:

v /A+y y<0

o) ={

o0, otherwise
phi(x) phi*(x)
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(c) Hinge loss: ¢(z) =max(1 — x,0)
% SOLUTION: ¢(z) is convex. see part (b).

Conjugate computation:
For y > 0, ¢*(y) is unbounded since 2* — oo.
For y < —1, ¢*(y) is unbounded since z* — —o0.

Consider the case when —1 < y < 0. We have ¢(z) = (1 — ) when x < 1 and 0 otherwise. Hence,
¢*(y) = sup(zy — (1 — z)). Differentiating we get, y +1=0o0r y = —1. Or, ¢*(y) =y
Hence we have the conjugate as:

o0, otherwise



phi(x) phi(x)
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(d) Sigmoid loss: ¢(x) = 1—tanh(kz), for fixed £ > 0

% SOLUTION: ¢"(z) = 2x2sech?(kx)tanh(kz). Hence, ¢ (z) has the same sign as tanh(kz) which
can be positive or negative. Hence ¢(x) is not convex.

Conjugate computation:

For y > 0, ¢*(y) is unbounded since z* — oo.

For y < 0, ¢*(y) is unbounded since z* — —o0.

Only when y = 0, we have ¢*(y) = —1 + tanh(kxx). Since hyperbolic tan is bound between -1 and 1, we
have ¢*(0) = 0.

Hence we have the conjugate as:

0 y=0
* _
¢"(y) = { 00, otherwise
phi(x) (k=1) phi*(x)
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3 [14 points]
If f(z,y) = fi(x) + f2(y), with f1 and f convex, show that
(@) = fi(@) + f5(y)

Does this hold if f; and f; are not convex?



% SOLUTION:

f(x,y) = sup(<u,v><z,y>" —flu,v))
sup(ux + vy — f(u) — f(v))
sup(uz — f(u)) + sup(vy — f(y))
= @)+ ()

Since we didn’t need the convexity condition, this also holds for non-convex functions.

4 [15 points]
The following is called the probit regression model. Suppose Y € {0, 1} is a random variable given by

v — 1 "X +b+V <0
T10 aTX+b+V >0

where X € RP is a vector of explanatory variables and V' ~ N(0, 1) is a latent (unobserved) random variable.
Formulate the maximum likelihood estimation problem of estimating a and b, given data consisting of pairs
(X, Y:),i=1,...,n, as a convex optimization problem.

% SOLUTION:
PY=1|X)=P@"X+b+V <0)=P(V < —a"X —b) = &(—a’ X — )

where ®(-) is the standard normal cdf. Therefore, P(Y =0|X) =1— P(Y = 1|X) = ®(a” X + ).
The log-likelihood

I

s
Il
-

la,b) = 3 [Vilog(P(Y = 1/X:)) + (1 — ¥;) log(P(Y = 0/X))]

[Vilog®(—a” X — b) + (1 - Y;)log ®(a” X + )] (1)

I

s
Il
-

According to the notes on log-concavity, ®(+) is log-concave. Thus, log ®(-) is a non-decreasing concave function.
Since —a’X — b and a®' X + b are concave functions of a and b, log ®(—a” X — b) and log ®(a” X + b) are
both concave functions of a and b. According to equation (1), I(a,b) is a non-negative weighted combination of
concave functions. Therefore, I(a,b) is a concave function.

The maximum likelihood estimation problem is to maximize the concave function I(a,b), which is equivalent
to minimize the convex function —I(a,b), so it is a convex optimization problem.

5 [15 points]
For z € R™ define the L, norm

2l = ZI!E )1/

for p > 0. Let
C=Az:|zf, <1}

Show that C' is convex if and only if p > 1.



% SOLUTION: First, we prove that if p > 1, then C' is convex. Let f(y) = y?, where y > 0and p > 1. It
is easily verified that f(y) is a non-decreasing convex function of y. Let g(y) = |y|, where y € R. g(y) is also a
convex function. Therefore, f(g(y)) = |y|? is a convex function, where y € R and p > 1.

Val,a? € C, 30 ojP < 1and 377, |23]P < 1. According to Jensen's inequality, Ve € [0, 1]

n n

Z|cw + (1 = ¢)xj Zc|x [P+ —c)|x?|p]§02|x}|p+(1—0)2|x?|p:1
j=1 j=1

i=1 i=1

Therefore, cx' + (1 — ¢)x? € C, and C is convex.
Next, we prove that if p < 1, then C is not convex. If n =1, it can be easily verified that C' is not convex. If
n>1,letz! =[1,0,...,0]7, 22 =[0,1,...,0]7 and c = 0.5.

D e+ (1—c)a3P =2x 05" >2x05=1
Jj=1

Therefore, cz' + (1 — ¢)z? ¢ C, and C is not convex.
To summarize, C' is convex if and only if p > 1.

6 [14 points]

Linear regression in R. Add brief comments to this code, and to the output, to explain what the code does
and what the output means.

% SOLUTION:

par (mfrow=c(2,2) ,bg=’cornsilk’) # plots will be drawn on a 2x2 grid on cornsilk background
n = 100

sigma = 1

x = rnorm(n) # generate ‘n’ random numbers from N(O0,1)

x = sort(x)

y = 5 + 3*%x + rnorm(n,0,sigma)
plot(x,y,col="blue",lwd=3)

out = 1lm(y~x)

summary (out)
abline(out,col="red",lwd=3)
abline(a=5,b=3,col="green",lwd=2)

y is linear function of x with normal noise
plot (x,y) with blue color

fit a linear model

show summary of fitted linear model

show predicted values of ‘y’ with ‘red’ lines
show true value of ‘y’ with ‘green’ lines

H OH H HE HH

+*

y = 5 + 3%x + rcauchy(n,0,sigma)
plot(x,y,col="blue",1lwd=3)

out = 1lm(y~x)

summary (out)
abline(out,col="red",lwd=3)
abline(a=5,b=3,col="green",lwd=2)

y is linear function of x with cauchy noise

nsim = 100
b = rep(0,nsim)

for(i in 1:nsim){ # generate random x and y 100 times with normal noise
x = rnorm(n) # and record the predicted slope of regression line
x = sort(x) # for each simulation

y = 5 + 3*x + rnorm(n,0,sigma)
out = 1m(y~x)



b[i] = out\$coef[2]

}

summary (b)

hist(b) # plot the histogram of predicted slope values
abline(v=3,1wd=3,col="red") # show true value in the histogram

print (mean((b-3)"2)) # print MSE value

HHHHHAEHAHBH B HAHBHHAH R HBH R AR R HEH SRR H RS R R R
# Output of summary(out) with normal noise

HHHHHAHAHBH B HAHBHHAH R H B R AR R R SRR R RS H AR R R H
Call:

Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-2.91252 -0.63554 -0.04475 0.62950 2.61872

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.1733 0.1052 49.19 <2e-16 **x
b'd 3.0534 0.1128 27.08 <2e-16 **x
Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’x’> 0.05 ’.” 0.1’ ’ 1

Residual standard error: 1.037 on 98 degrees of freedom
Multiple R-Squared: 0.8821, Adjusted R-squared: 0.8809
F-statistic: 733.2 on 1 and 98 DF, p-value: < 2.2e-16

As seen above, the estimates of regression coefficients are 5.17 and

3.05. These are very close to the true values and very significant (<2e-16).
The plot shows that the ranlge of ‘y’ is very large as compared to normal.
S R R i

st e i e s i s s e s s b s S S e s s e i e s T e
# Output of summary(out) with cauchy noise

HHHHHAEHAHBH B HAHBHHAH R H B R AR R AR SRR R R RS HA RSB RHRRH
Call:

Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-20.2287 -0.9422 0.1061 1.0327 7.8915

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.0879 0.3379 15.058 < 2e-16 **x*
b'd 2.6615 0.3683 7.227 1.09e-10 **x
Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.” 0.1 7 ’ 1

Residual standard error: 3.356 on 98 degrees of freedom
Multiple R-Squared: 0.3477, Adjusted R-squared: 0.341
F-statistic: 52.23 on 1 and 98 DF, p-value: 1.087e-10



As seen above, the estimates with cauchy noise are not as good as from
normal noise. This is due to the fact that cauchy has heavier tails.
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7 [14 points]

Prove the leave-one-out cross-validation identity:
1 AR A%
- Yz _ Y—i 2 _ [ )
n;( =) i=1 <1_H“>

Y SOLUTION: Consider Z such that

S|

Yy j#i
Zj_{f/j(_i) j:’L

SSE = Z(Yj(_i) — Z;)2. This is also the minimal SSE for the regression on Y without the ' data point.

Hence,Yi(_i) = (HZ);

= ZHika + HiiZ;
ki
= Z Hi Y — HyYi + Hy ¥,
= (HY), — HyY; + H;Y, ™"
= Vi HyYi+ Hv, ")
Y, — HyY;
1 — Hij;

Using this we get,

. 2 N\ 2
1 (i) L Y, -Y;H; - Y, + H;Y; 1 Y,-Y;
t Y, - Y, == ==
nz( i) nz< 1— Hy ) nz<1_Hu.>

Hence proved.




