10702/36702 Statistical Machine Learning, Spring 2008 Homework 2 Solutions

February 20, 2008

1 [15 points]

(a) Let π_n be a sequence of priors and $\tilde{\theta}_n$ the corresponding Bayes estimators. Suppose that

$$\int R(\theta, \tilde{\theta}_n) \pi_n(\theta) d\theta \to c$$

for some finite c. Suppose that $\hat{\theta}$ is an estimator such that

$$\sup_{\theta} R(\theta, \hat{\theta}) \le c$$

Show that $\hat{\theta}$ is minimax.

 \bigstar **SOLUTION:** For any estimator T

$$\sup_{\theta} R(\theta, T) \ge \int R(\theta, T) \pi_n(\theta) d\theta$$
$$\ge \int R(\theta, \tilde{\theta}_n \pi_n(\theta) d\theta$$

Let n goes to infinity on both sides of the inequality, we have

$$\lim_{n \to \infty} \sup_{\theta} R(\theta, T) = \sup_{\theta} R(\theta, T) \ge \lim_{n \to \infty} \int R(\theta, \tilde{\theta}_n) \pi_n(\theta) d\theta = c \ge \sup_{\theta} R(\theta, \hat{\theta})$$

Therefore, $\hat{\theta}$ is minimax.

(a) Let $X \sim N(\theta, 1)$. Show that $\hat{\theta} = X$ is minimax.

Hint: Let π_n be N(0,n). Check that

$$\int R(\theta, \hat{\theta}_n) \pi_n(\theta) d\theta \to 1$$

Next show that $R(\theta, X) = 1$. Consider from part (a) that X is minimax.

★ SOLUTION: Let π_n be N(0,n). The posterior distribution

$$\pi(\theta|X=x) \propto \exp(-\frac{(x-\theta)^2}{2}) \cdot \exp(-\frac{\theta^2}{2n})$$
$$\propto \exp(-\frac{(n+1)(\theta-\frac{n}{n+1}x)^2}{2n}$$

Therefore, $\pi(\theta|X=x) \sim N(\frac{n}{n+1}X,\frac{n}{n+1})$, and the Bayes estimator $\tilde{\theta}_n = \frac{n}{n+1}X$. The risk

$$R(\theta, \tilde{\theta}_n) = E_{\theta}(\theta - \tilde{\theta}_n)^2 = (E_{\theta}\tilde{\theta}_n - \theta)^2 + Var_{\theta}(\tilde{\theta}_n) = \frac{\theta^2 + n^2}{(n+1)^2}$$

The Bayes risk

$$\int R(\theta, \tilde{\theta}_n) \pi_n(\theta) d\theta = \int \frac{\theta^2 + n^2}{(n+1)^2} \cdot \frac{\exp(-\frac{\theta^2}{2n})}{\sqrt{2\pi n}} d\theta = \frac{n+n^2}{(n+1)^2} = \frac{n}{n+1}$$

Therefore, as $n \to \infty$, the Bayes risk goes to 1. On the other hand,

$$R(\theta, X) = (E_{\theta}(X) - \theta)^2 + Var_{\theta}X = 1$$

Therefore, $\sup_{\theta}R(\theta,X)=1.$ According to (a), X is minimax.

2 [16 points]

The following is a list of some loss functions commonly used for large-margin classification algorithms. For each loss function $\phi(x)$ determine whether ϕ is a convex function, and then calculate its conjugate ϕ^* . Plot ϕ and ϕ^* .

(a) Exponential loss: $\phi(x) = exp(-x)$

★ SOLUTION: $\phi''(x) = exp(-x) \succeq 0 \quad \forall x$. Hence $\phi(x)$ is convex.

Conjugate function: $\phi^*(y) = \sup_x (xy - exp(-x)).$

For y > 0, $\phi^*(y)$ is unbounded.

For y = 0, $\phi^*(y) = 0$.

For y < 0, $\frac{\partial}{\partial x}(xy - exp(-x)) = y - exp(-x) = 0$.

Or, $x^\star = -log(-y)$. Substituting x, we get $\phi^\star(y) = -ylog(-y) + y$.

$$\phi^{\star}(y) = \begin{cases} \infty & y > 0 \\ 0 & y = 0 \\ -ylog(-y) + y & y < 0 \end{cases}$$

(b) Truncated quadratic loss: $\phi(x) = [\max(1-x,0)]^2$

★ SOLUTION: 1-x and 0 are both convex. Hence $\max[(1-x),0]$ is also convex. Square of convex function also convex. Hence $\phi(x)$ convex.

Conjugate computation:

For y > 0, $\phi^*(y)$ is unbounded since $x^* \to \infty$.

Consider $y \le 0$. Then for $x \le 1$ we have $\phi(x) = (1-x)^2$ and $\phi^*(y) = \sup(xy - (1-x)^2)$. To find the maximum we differentiate to get y + 2(1-x) = 0 or $x^* = 1 + y/2$. Substituting for x in $\phi^*(y)$ we get $\phi^*(y) = (1+y/2)y - y^2/4 = y^2/4 + y$. For x > 1, the conjugate is unbounded.

Hence we have the conjugate as:

$$\phi^{\star}(y) = \left\{ \begin{array}{cc} y^2/4 + y & y \leq 0 \\ \infty, & otherwise \end{array} \right.$$

- (c) Hinge loss: $\phi(x) = \max(1 x, 0)$
 - **★ SOLUTION:** $\phi(x)$ is convex. see part (b).

Conjugate computation:

For y > 0, $\phi^*(y)$ is unbounded since $x^* \to \infty$.

For y < -1, $\phi^*(y)$ is unbounded since $x^* \to -\infty$.

Consider the case when $-1 \le y \le 0$. We have $\phi(x) = (1-x)$ when $x \le 1$ and 0 otherwise. Hence, $\phi^*(y) = \sup(xy - (1-x))$. Differentiating we get, y + 1 = 0 or y = -1. Or, $\phi^*(y) = y$

Hence we have the conjugate as:

$$\phi^{\star}(y) = \begin{cases} y & -1 \le y \le 0\\ \infty, & otherwise \end{cases}$$

phi*(x) phi(x) 9 -0.2 2 pmax(1 - x, 0) 4 က 9.0-0 0 -2 0 2 -0.8 -0.6 х

(d) Sigmoid loss: $\phi(x) = 1 - \tanh(\kappa x)$, for fixed $\kappa > 0$

★ SOLUTION: $\phi''(x) = 2\kappa^2 \operatorname{sech}^2(\kappa x) \tanh(\kappa x)$. Hence, $\phi''(x)$ has the same sign as $\tanh(\kappa x)$ which can be positive or negative. Hence $\phi(x)$ is not convex.

-0.4

х

-0.2

Conjugate computation:

For y > 0, $\phi^{\star}(y)$ is unbounded since $x^{\star} \to \infty$.

For y < 0, $\phi^*(y)$ is unbounded since $x^* \to -\infty$.

Only when y=0, we have $\phi^{\star}(y)=-1+\tanh(\kappa x)$. Since hyperbolic tan is bound between -1 and 1, we have $\phi^{*}(0) = 0$.

Hence we have the conjugate as:

$$\phi^{\star}(y) = \begin{cases} 0 & y = 0\\ \infty, & otherwise \end{cases}$$

[14 points]

If $f(x,y) = f_1(x) + f_2(y)$, with f_1 and f_2 convex, show that

$$f^{\star}(x,y) = f_1^{\star}(x) + f_2^{\star}(y)$$

Does this hold if f_1 and f_2 are not convex?

★ SOLUTION:

$$\begin{array}{lcl} f^{\star}(x,y) & = & \sup(< u,v> < x,y>' - f(u,v)) \\ & = & \sup(ux + vy - f(u) - f(v)) \\ & = & \sup(ux - f(u)) + \sup(vy - f(y)) \\ & = & f^{\star}(x) + f^{\star}(y) \end{array}$$

Since we didn't need the convexity condition, this also holds for non-convex functions.

4 [15 points]

The following is called the probit regression model. Suppose $Y \in \{0,1\}$ is a random variable given by

$$Y = \begin{cases} 1 & a^T X + b + V \le 0 \\ 0 & a^T X + b + V > 0 \end{cases}$$

where $X \in \mathbb{R}^p$ is a vector of explanatory variables and $V \sim N(0,1)$ is a latent (unobserved) random variable. Formulate the maximum likelihood estimation problem of estimating a and b, given data consisting of pairs (X_i, Y_i) , $i = 1, \ldots, n$, as a convex optimization problem.

★ SOLUTION:

$$P(Y = 1|X) = P(a^TX + b + V \le 0) = P(V \le -a^TX - b) = \Phi(-a^TX - b)$$

where $\Phi(\cdot)$ is the standard normal cdf. Therefore, $P(Y=0|X)=1-P(Y=1|X)=\Phi(a^TX+b)$. The log-likelihood

$$l(a,b) = \sum_{i=1}^{n} [Y_i \log(P(Y=1|X_i)) + (1-Y_i) \log(P(Y=0|X_i))]$$

$$= \sum_{i=1}^{n} [Y_i \log \Phi(-a^T X - b) + (1-Y_i) \log \Phi(a^T X + b)]$$
(1)

According to the notes on log-concavity, $\Phi(\cdot)$ is log-concave. Thus, $\log \Phi(\cdot)$ is a non-decreasing concave function. Since $-a^TX-b$ and a^TX+b are concave functions of a and b, $\log \Phi(-a^TX-b)$ and $\log \Phi(a^TX+b)$ are both concave functions of a and b. According to equation (1), l(a,b) is a non-negative weighted combination of concave functions. Therefore, l(a,b) is a concave function.

The maximum likelihood estimation problem is to maximize the concave function l(a,b), which is equivalent to minimize the convex function -l(a,b), so it is a convex optimization problem.

5 [15 points]

For $x \in \mathbb{R}^n$ define the L_p norm

$$||x||_p = (\sum_{j=1}^n |x_j|^p)^{1/p}$$

for p > 0. Let

$$C = \{x : ||x||_n < 1\}$$

Show that C is convex if and only if $p \geq 1$.

★ SOLUTION: First, we prove that if $p \ge 1$, then C is convex. Let $f(y) = y^p$, where y > 0 and $p \ge 1$. It is easily verified that f(y) is a non-decreasing convex function of y. Let g(y) = |y|, where $y \in \mathbb{R}$. g(y) is also a convex function. Therefore, $f(g(y)) = |y|^p$ is a convex function, where $y \in \mathbb{R}$ and $p \ge 1$.

 $\forall x^1, x^2 \in C$, $\sum_{j=1}^n |x_j^1|^p \le 1$ and $\sum_{j=1}^n |x_j^2|^p \le 1$. According to Jensen's inequality, $\forall c \in [0,1]$

$$\sum_{j=1}^{n} |cx_{j}^{1} + (1-c)x_{j}^{2}|^{p} \le \sum_{j=1}^{n} [c|x_{j}^{1}|^{p} + (1-c)|x_{j}^{2}|^{p}] \le c \sum_{j=1}^{n} |x_{j}^{1}|^{p} + (1-c) \sum_{j=1}^{n} |x_{j}^{2}|^{p} = 1$$

Therefore, $cx^1 + (1-c)x^2 \in C$, and C is convex.

Next, we prove that if p < 1, then C is not convex. If n = 1, it can be easily verified that C is not convex. If n > 1, let $x^1 = [1, 0, \dots, 0]^T$, $x^2 = [0, 1, \dots, 0]^T$ and c = 0.5.

$$\sum_{j=1}^{n} |cx_{j}^{1} + (1-c)x_{j}^{2}|^{p} = 2 \times 0.5^{p} > 2 \times 0.5 = 1$$

Therefore, $cx^1 + (1-c)x^2 \notin C$, and C is not convex.

To summarize, C is convex if and only if $p \ge 1$.

6 [14 points]

Linear regression in R. Add brief comments to this code, and to the output, to explain what the code does and what the output means.

★ SOLUTION:

```
par(mfrow=c(2,2),bg='cornsilk')
                                      # plots will be drawn on a 2x2 grid on cornsilk background
n = 100
sigma = 1
x = rnorm(n)
                                      # generate 'n' random numbers from N(0,1)
x = sort(x)
y = 5 + 3*x + rnorm(n, 0, sigma)
                                      # y is linear function of x with normal noise
plot(x,y,col="blue",lwd=3)
                                      # plot (x,y) with blue color
out = lm(y^x)
                                      # fit a linear model
                                      # show summary of fitted linear model
summary(out)
abline(out,col="red",lwd=3)
                                      # show predicted values of 'y' with 'red' lines
                                      # show true value of 'y' with 'green' lines
abline(a=5,b=3,col="green",lwd=2)
y = 5 + 3*x + rcauchy(n, 0, sigma)
                                      # y is linear function of x with cauchy noise
plot(x,y,col="blue",lwd=3)
out = lm(y^x)
summary(out)
abline(out,col="red",lwd=3)
abline(a=5,b=3,col="green",lwd=2)
nsim = 100
b = rep(0, nsim)
for(i in 1:nsim){
                                      # generate random x and y 100 times with normal noise
 x = rnorm(n)
                                      # and record the predicted slope of regression line
  x = sort(x)
                                      # for each simulation
  y = 5 + 3*x + rnorm(n, 0, sigma)
  out = lm(y^x)
```

```
b[i] = out\scoof[2]
summary(b)
hist(b)
                             # plot the histogram of predicted slope values
abline(v=3,1wd=3,col="red")
                             # show true value in the histogram
print(mean((b-3)^2))
                             # print MSE value
# Output of summary(out) with normal noise
lm(formula = y ~ x)
Residuals:
   Min
           1Q Median
                                Max
                          3Q
-2.91252 -0.63554 -0.04475 0.62950 2.61872
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1733 0.1052 49.19 <2e-16 ***
Y
          3.0534
                   0.1128 27.08 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.037 on 98 degrees of freedom
Multiple R-Squared: 0.8821,
                        Adjusted R-squared: 0.8809
F-statistic: 733.2 on 1 and 98 DF, p-value: < 2.2e-16
As seen above, the estimates of regression coefficients are 5.17 and
3.05. These are very close to the true values and very significant (<2e-16).
The plot shows that the ranlge of 'y' is very large as compared to normal.
# Output of summary(out) with cauchy noise
Call:
lm(formula = y ~x)
Residuals:
           1Q Median
                          3Q
                                Max
-20.2287 -0.9422 0.1061 1.0327 7.8915
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0879 0.3379 15.058 < 2e-16 ***
           2.6615
                   0.3683 7.227 1.09e-10 ***
X
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 3.356 on 98 degrees of freedom
Multiple R-Squared: 0.3477,
                        Adjusted R-squared: 0.341
F-statistic: 52.23 on 1 and 98 DF, p-value: 1.087e-10
```

As seen above, the estimates with cauchy noise are not as good as from normal noise. This is due to the fact that cauchy has heavier tails.

Histogram of b

7 [14 points]

Prove the leave-one-out cross-validation identity:

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_{(-i)})^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{Y}_i}{1 - H_{ii}} \right)^2$$

 \bigstar **SOLUTION:** Consider Z such that

$$Z_j = \begin{cases} Y_j & j \neq i \\ \hat{Y}_i^{(-i)} & j = i \end{cases}$$

 $SSE = \sum (Y_j^{(-i)} - Z_j)^2$. This is also the minimal SSE for the regression on Y without the i^{th} data point.

$$\begin{aligned} \mathsf{Hence}, & \hat{Y}_i^{(-i)} &= (HZ)_i \\ &= \sum_{k \neq i} H_{ik} Z_k + H_{ii} Z_i \\ &= \sum_{k \neq i} H_{ik} Y_k - H_{ii} Y_i + H_{ii} \hat{Y}_i^{(-i)} \\ &= (HY)_i - H_{ii} Y_i + H_{ii} \hat{Y}_i^{(-i)} \\ &= \hat{Y}_i - H_{ii} Y_i + H_{ii} \hat{Y}_i^{(-i)} \\ &= \frac{\hat{Y}_i - H_{ii} Y_i}{1 - H_{ii}} \end{aligned}$$

Using this we get,

$$\frac{1}{n}\sum_{i}(Y_{i}-\hat{Y}_{i}^{(-i)})^{2} = \frac{1}{n}\sum_{i}\left(\frac{Y_{i}-Y_{i}H_{ii}-\hat{Y}_{i}+H_{ii}Y_{i}}{1-H_{ii}}\right)^{2} = \frac{1}{n}\sum_{i}\left(\frac{Y_{i}-\hat{Y}_{i}}{1-H_{ii}}\right)^{2}$$

Hence proved.