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1 [20 points], (Robin)

⋆ SOLUTION:

(a) Take any set of N atoms JN from the total set D. The distance between f and g is then:

||f − g|| = ||f − fN ||

= ||
∑

D

βjψj −
∑

JN

βjψj ||

= ||
∑

D−JN

βjψj ||

=

√

∑

D−JN

β2
j < ψj , ψj >

=

√

∑

D−JN

β2
j

which is minimized when JN is over the N largest values of |βj |.

(b) In OGA, at each step rN−1 = f − fN =
∑

D−JN−1
βjψj where JN−1 is a set of functions selected so far.

To choose the next function, compute

cpN,i = | < rN−1, ψi > |

= |
∑

D−JN−1

βj < ψj , ψi > |

= |βi < ψi, ψi > +
∑

D−JN−1−i

βj < ψj , ψi > |

= |βi|

The maximum is achieved at argmaxi|bi|. Hence OGA recovers fN exactly.
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(c)

σN (f) = ||f − fN || =

√

∑

D−JN

β2
j

<

√

√

√

√

|D|
∑

N+1

C2

j2/p
<

√

√

√

√

|D|
∑

N+1

C2

(N + 1)2/p

<

√

|D|C2

(N + 1)2/p
<

√

(N + 1)C2

(N + 1)2/p

=

√

C2

(N + 1)
2

p−1

= O(
1

N1/p−1/2
)

= O(
1

Ns
)

2 [20 points], (Robin)

⋆ SOLUTION: Start with Bernstein’s inequality

P (|X̄n| > t) ≤ 2e
− nt2

2σ2+2ct
3

Then substitute t = σ
√

2δ
n + 2cδ

3n and simplify to get

P (|X̄n| > σ

√

2δ

n
+

2cδ

3n
) ≤ 2e−δ

3 [20 points], (Robin)

⋆ SOLUTION:

(a) When r = 1 we have u(x) − l(x) ≤ ǫ, i.e. the bracket is in the ball of ǫ/2 around (u + l)/2, the center
of the bracket. This is also the ǫ/2 cover. Since the bracket is contained in within this ball, we need more
ǫ-brackets than the ǫ/2 cover to cover the function. Hence,

N1(ǫ/2,F) ≤ N[](ǫ,F , L1(P ))

From Theorem 1.46 in notes we have

P (supf∈F |Pn(f) − P (f)| > ǫ) ≤ 8N1(ǫ/8,F)e−nǫ2/128B2

≤ 8N[](ǫ/4,F , L1(P ))e−nǫ2/32B2

→ 0 as n→ ∞

Hence proved.

(b) we can create the ǫ-brackets as follows. Let −∞ = t0 < t1 < ... < tk = ∞ where t ∈ R. We can choose
the bracketing functions themselves to be indicator functions. Let Iti

= I(−∞,ti]. For ǫ-bracket, we have
∫ ∞

−∞
(u(x) − l(x))p(x)dx ≤ ǫ. Hence,

∫ ∞

−∞

(Iti
(x) − Iti−1

(x))p(x)dx ≤ ǫ ∀i = 0, 1, .., k
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But if x < ti−1 then Iti
(x) = Iti−1

(x) and if x ≥ ti−1 then Iti
(x) − Iti−1

(x) = 1. So,
∫ ti

ti−1
p(x) ≤ ǫ.

Hence, each bracket consumes a probability mass of atmost ǫ and since the total probability mass is 1,
there are 1/ǫ such brackets consuming the entire mass of 1 which is bounded by 2/ǫ (if 1/ǫ is not a whole
number). Hence proved.

4 [20 points], (Robin)

⋆ SOLUTION: The VC dimension of axis-aligned rectangles in Rd is 2d.

(1) Show that the V C − dim ≥ 2d.

Consider a set of 2d points where each point only has one of the d dimensions set to either 1 or −1 and 0
for all other dimensions. It is easy to see that any subset of these points can be shattered by an axis-aligned
rectangle. Hence the VC-dim is atleast 2d.

(2) Show that the V C − dim < 2d + 1. Consider a set of 2d+1 points. Consider finding the minimum
and maximum of value in each dimension for these set of points and then building a Rd rectangle with
these bounds. Since there are 2d + 1 points, atleast one point must lie inside this rectangle. If we label
this interior point as negative then there is no rectangle that can separate this labeling. This proves that
V C − dim < 2d+ 1.

Combining (1) and (2) we get that the V C − dim = 2d. Intuitively, there are 2d free parameters (lower and
upper bound in each dimension) of the rectangle and hence the VC-dimension is 2d.

5 [20 points], (Robin)

⋆ SOLUTION:

(a) You can assume k=6 since we need to compare the predicted and true clusters. Also, you need to define a
good comparison metric.

One such metric is to penalize a pair of points that belongs to the same true cluster but is present in
different predicted clusters and vice versa. You can then report the probability of error over all pairs of
points in the data.

Under this scoring metric, K-Means error is 0.13 and Hierarchical clustering error is 0.16. This shows that
K-Means performs better on the data.

(b) Note that here we need to select a subset of original features and not use any kind of projection or
transformation of data. Some possibilities for feature selection are: (1) apply kmeans using each feature
and select the set of features greedily with minimum distortion in predicted clusters (2) assume that the
clusters must have similar number of points ad hence use entropy measure to select the features.

Using the first technique, K-Means error with top 15 features is 0.15 which is only 2% more than using all
features, i.e. with a only quarter of original features.

6 [20 points], (Robin)

⋆ SOLUTION:
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(a) Original data
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(b) Clustered data
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