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Motivation

Many statistical inference problems result in intractable computations...
e Bayesian posterior over model parameters:

P(DIB)P(8)

POID) =~

e Computing posterior over hidden variables (e.g. for E step of EM):

P(V|H,0)P(H|B)

P(H|V,0) = 0

e Computing marginals in a multiply-connected graphical
models:
P(xilx; =€) = Z P(x|x; = e)
A\ D)

Solutions: Markov chain Monte Carlo, variational approxima-
tions
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Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (51, ..., Sk)
real-valued observation vector y
parameters 0 = {{u;, ;}X |, 0}

s ~ Bernoulli
yls ~ Gaussian
K K
p(sim) = plsy, ..., scim) = [ ]psim) =] [ (1—m) )
i=1 i=1
K
plylsi,... sk, m0?) = N (Z Sitti, G2I>
i=1
EM optimizes bound on likelihood: F(q,0) = (log p(s, ¥10))g(s) — (108 q(s))q(s)
where (), is expectation under g: (F(s))q ' 5, F(s)q(s)

Exact E step: g(s) = p(sly, ©) distribution over 2K states: intractable for large K
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Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (sq, ..., Sk)
real-valued observation vector y
parameters 0 = {{u;, ;}X |, 02}

s ~ Bernoulli
yls ~ Gaussian

Figure 2: Left panel: Ongmal source 1mages used to generate data. Middle panel: Observed images
resulting from mixture of sources. Right panel: Recovered sources

from Lu et al (2004)
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Review: The EM algorithm

Given a set of observed (visible) variables V/, a set of unobserved (hidden / latent /
missing) variables H, and model parameters 0, optimize the log likelihood:

£(0) = log p(V]0) = log j p(H, VI0)dH,

Using Jensen’s inequality, for any distribution of hidden variables q(H) we have:

p(H,V|0)
q(H)

p(H. VI0)

o(H) dH =3(q.0),

£(6) =Iogjq(H) dH > jq(H) log

defining the F(q, 0) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q,0) wrt g and 6, and we can prove
that this will never decrease L.
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The E and M steps of EM

The lower bound on the log likelihood:

(H, Vo)

7(0,0) = | atH)log 2L 2 dH = [ alH) og plH, Vie)dH +9(q),

where H(q) = — J g(H)log q(H)dH is the entropy of q. We iteratively alternate:
E step: maximize F(q, 0) wrt the distribution over hidden variables given the

parameters:

g*(H) = arg(rl:])ax "J"(q(H),G[k l]) — p(H|V, 0% 1.
q

M step: maximize F(q, 0) wrt the parameters given the hidden distribution:
gkl .= argmax "J"(q“" (H), 9) = argmax Jq[k] (H)logp(H, V|0)dH,
0 0
which is equivalent to optimizing the expected complete log likelihood

log p(H, V|0), since the entropy of q(H) does not depend on 6.
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Variational Approximations to the EM algorithm

Often p(H|V, 0) is computationally intractable, so an exact E step is out of the
question.

Assume some simpler form for g(H), e.g. g € Q, the set of fully-factorized
distributions over the hidden variables: q(H) =[]; q(H;)

E step (approximate): maximize F(q, 0) wrt the distribution over hidden

variables given the parameters:

g*(H) = argmax Sr(q(H), 9“‘*1]).
q(H)€Q

M step : maximize F(q, 0) wrt the parameters given the hidden distribution:

plkl .= argmax ff(q[k](H), 8) = argmax Jq[k](H) log p(H, V|8)dH,
0 0

This maximizes a lower bound on the log likelihood.
Using the fully-factorized g is sometimes called a mean-field approximation.
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Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (51, ..., Sk)
real-valued observation vector y
parameters 0 = {{u;, ;}X |, 0}

s ~ Bernoulli
yls ~ Gaussian
K K
p(sim) = plsy, ..., scim) = [ ]psim) =] [ (1—m) )
i=1 i=1
K
plylsi,... sk, m0?) = N (Z Sitti, G2I>
i=1
EM optimizes bound on likelihood: F(q,0) = (log p(s, ¥10))g(s) — (108 q(s))q(s)
where (), is expectation under g: (F(s))q ' 5, F(s)q(s)

Exact E step: g(s) = p(sly, ©) distribution over 2K states: intractable for large K
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Example: Binary latent factors model (cont.)

log  p(s.yl@)+c

1
= Y& silogm +(1—s)log(l—m)—Dlogo— 52— > sig)

Z,ils,-logﬂ,- +(175;)|0g(177t;)7D|0g0‘
“502 <y y—2Zs,u, y+ZZs,5,u, u,)

we therefore need (s;) and (s;s;) to compute F.

These are the expected sufficient statistics of the hidden variables.
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Example: Binary latent factors model (cont.)

Variational approximation:

K

qls) = H qi(si) = H}\'?i(l —A;) L)

i=1

where A; is a parameter of the variational approximation modelling the posterior
mean of s; (compare to 7t; which models the prior mean of s;).

Under this approximation we know (s;) = A; and (s;s;) = AiA; + 8;;(A; — A?).

(1— ;)

T

1 T
—Dlogo — @(y—;hu;) (y—;A;u;)
1

202 &
i

D
A = A Ty — > log(27)
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Fixed point equations for the binary latent factors model

Taking derivatives w.r.t. A;:

oF U }\,' 1
. —log e e+ v 2 A = o
JF
Setting to zero we get fixed point equations:
I 7
Ai=f | log —y— ZAJH, i = 5oaMi M

JF#i

where f(x) = 1/(1 + exp(—x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of A for each data point.
M step: re-estimate O given As.
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KL divergence

Note that

E step maximize F(q, 0) wrt the distribution over hidden variables, given the

parameters:
g (H) = argmax ?(q(H), gk 1]).
q(H)eQ

is equivalent to:

E step minimize XL (q||p(H|V, 0)) wrt the distribution over hidden
variables, given the parameters:

q“‘] (H) .= argmian(H) log B q(H) dH

a(H)eQ (HIV,6lk1))

So, in each E step, the algorithm tries to find the best approximation to p in Q.

This is related to ideas in information geometry.

Ghahramani (CMU) Variational Approximations April 16th, 2008

12 / 23



Variational Approximations to Bayesian Learning

logp(V) = IogJJp(V,Hle)p(G)dH do

p(V,H,0)

dH do
q(H,9)

> Hq(H,e)log

Constrain g € Q s.t. q(H,0) = q(H)q(0).

This results in the variational Bayesian EM algorithm.
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Mixture of Factor Analysers

Goal: #

e Infer number of clusters

e Infer intrinsic dimensionality of each cluster

Under the assumption that each cluster is Gaussian
embed_demo
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Mixture of Factor Analysers

True data: 6 Gaussian clusters with dimensions: (1 7 4 3 2 2) embedded in 10-D

Inferred structure:

number of points intrinsic dimensionalities

per cluster 1 7 4 3 2 2
8 [ 2 L1 |
8 L1 1 2 |
16 1 [ 4 | 2
32 1 6 3 3 2 2
64 1 7 4 3 2 2
128 1 7 4 3 2 2

centerline

e Finds the clusters and dimensionalities efficiently.
e The model complexity reduces in line with the lack of data support.

demos: run_simple and ueda_demo
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Hidden Markov Models

58

Discrete hidden states, s;.
Observations y;.

How many hidden states?
What structure state-transition matrix?

demo: vbhmm_demo
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Variational Approximations and Graphical Models |

Let g(H) =TT, gi(H:).

Variational approximation maximises J:
F(q) = | a(H)log plH, V)dH — [ q(H)log gl H)dh

Focusing on one term, g;, we can write this as:
F(q;) = qu(Hj) (log p(H, V))qu_(Hl_) dH; + J. qj(H;) log gj(H;)dH; + const

Where (-) (H;) denotes averaging w.r.t. g;(H;) for all i #£

~qj

Optimum occurs when:

§ 1
q; (H) = > exp (log p(H, V1)) g, s
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Variational Approximations and Graphical Models [l

Optimum occurs when:

§ 1 a e
q; (Hy) = — exp (log p(H., V1)) _g,(
= [1; p(Xilpa;)

Assume graphical model: p(H, V)

log g; (H;) = <Zlogp(Xilpa;)>Nq_(H_)+c0nst
= (logp(Hjlpa;)) ) + D (log p(Xklpak)) g, + const
kech;

This defines messages that get passed between nodes in the graph. Each node
receives messages from its Markov boundary: parents, children and parents of

children.
Variational Message Passing (Winn and Bishop, 2004)
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Expectation Propagation (EP)

Data (iid) D = {x* ..., xM)}, model p(x|0), with parameter prior p(0).

N
1 )
The parameter posterior is: 0|D) = ——p(0 xe
p p plOID) =~ )Ep( )
N _ N
We can write this as product of factors over ©: p(0) Hp(x(’)le) = H £;(0)
i=1 '
where f4(0) def p(0) and £;(0) def p(x')]0) and we will ignore the constants.
N
We wish to approximate this by a product of simpler terms: é H?
i=0
N
m|n XL (H (6 H )) (intractable)
=0
min KL (:(0)||% (0 ) (simple, non-iterative, inaccurate)
%(9)
min XL ( f;(0 f(0)||f(0 f(o simple, iterative, accurate EP
min (()g,u ()E,( ) (simp ) -
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Expectation Propagation |l

Input f5(0) ... fn(0)
Initialize %,(8) = f,(0), f;(6) =1 for i >0, q(0) =], fi(®

repeat
for i=0...Ndo
Deletion: q.;(0) H i

JFi
Projection: "% (@ )<— arg p(ur} KL(£(0)gu(0)|If(8) gl
0

Inclusion: g(8) «— £ (0) . (0)
end for
until convergence

0))

The EP algorithm. Some variations are possible: here we assumed that f; is in the

exponential family, and we updated sequentially over /.

e Tries to minimize the opposite KL to variational methods
e 7(0) in exponential family — projection step is moment matching

e No convergence guarantee (although convergent forms can be developed)
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Some Further Readings

e MacKay, D.J.C. (2003) Information Theory, Inference, and Learning Algorithms.
Chapter 33.

e Bishop, C.M. (2006) Pattern Recognition and Machine Learning.

e Winn, J. and Bishop, C.M. (2005) Variational Message Passing. J. Machine Learning
Research. http://johnwinn.org/Publications/papers/VMP2005.pdf

e Lu, X., Hauskrecht, M., and Day, R.S. (2004) Modeling cellular processes with
variational Bayesian cooperative vector quantizer. In the Proceedings of the Pacific
Symposium on Biocomputing (PSB) 9:533-544.
http://psb.stanford.edu/psb-online/proceedings/psb04/1lu.pdf

e Minka, T.P. (2004) Roadmap to EP:
http://research.microsoft.com/~minka/papers/ep/roadmap.html

e Ghahramani, Z. (1995) Factorial learning and the EM algorithm. In Adv Neur Info
Proc Syst 7.
http://learning.eng.cam.ac.uk/zoubin/zoubin/factorial.abstract.html

e Jordan, M.1., Ghahramani, Z., Jaakkola, T.S. and Saul, L.K. (1999) An Introduction
to Variational Methods for Graphical Models. Machine Learning 37:183-233.
Available at: http://learning.eng.cam.ac.uk/zoubin/papers/varintro.pdf
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Appendix: The binary latent factors model for an i.i.d. data
set

Assume data set D = {y') ... y(N)} of N points and params @ = {{u;, m;}K ,, 02}
Use a factorlslsd distribution;,

:an an ) = HH(}\'{"))S;(")(]__)\’(_”))(l—sl.("))
n=1 n ;

n=1i=1

N
Hp(y( )

p(Dle) =
ply'"1e) = Zp "ls, u, 0)p(sim)
Flqls),0) = Z&n qn(s'"), 8) < log p(DI0)
Talanls™). 0) = <Iogp(s(">,y<"’|e)>qn(s("])f<logqn(s(“)>qn(s("])

We need to optimise w.r.t. g,(s'™) for each data point, so
E step: optimize g,(s(™) (i.e. A" for each n.
M step: re-estimate © given q,(s(")'s.
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Appendix: How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.
To determine how tight the bound is, one can approximate the true likelihood by a
variety of other methods.

One approach is to use the variational approximation as as a proposal distribution
for importance sampling.

But this will generally not work well. See exercise 33.6 in David MacKay's textbook.

Ghahramani (CMU) Variational Approximations April 16th, 2008 23 /23



