Gaussian Processes

Zoubin Ghahramani

http://learning.eng.cam.ac.uk/zoubin/
zoubin@cs.cmu.edu

Statistical Machine Learning
CMU 10-702 / 36-702
Spring 2008

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X,y}

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f)p(D|f)

p(f|D) = (D)

Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function
mapping some input space X to R.

f: X — R

Notice that f can be an infinite-dimensional quantity (e.g. if X = R)

Let f = (f(x1),..., f(z,)) be an n-dimensional vector of function values evaluated
at n points z; € X. Note f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {z1,...,2,} C X,
the marginal distribution over that finite subset p(f) has a multivariate Gaussian
distribution.

Gaussian process covariance functions

p(f) is a Gaussian process if for any finite subset {z1,...,z,} C X, the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, u(x), and a
covariance function, K (x,x’).

p(f (@), f(z')) = N(u, %)

where . [()] 5= [5 g;j) ;ggf:?)

and similarly for p(f(x1), ..

., f(z,)) where now g is an n x 1 vector and X is an
n X n matrix.

Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, u(z), and a
covariance function, K(z,z’).

An example covariance function:

K(:Ci,ajj) = vgexp{— (‘ZUZ _xj‘> } + U1 —1—?}252'3'

”

with parameters (vg, v1, V2, T, @) vy signal variance
vy variance of bias

These parameters are interpretable: v noise variance

r lengthscale
« roughness

Once the mean and covariance functions are defined, everything else about GPs
follows from the basic rules of probability applied to mutivariate Gaussians.

Samples from GPs with different K (x,x’)

Using Gaussian processes for nonlinear regression

Imagine observing a data set D = {(x;,v:)i—1} = (X,y).

Model: yi = [f(xi)+e
€ N("O7O-2)

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

p(y.[x., D) = / p(ys %0 £, D) p(f|D) df

We can also compute the marginal likelihood (evidence) and use this to compare or
tune covariance functions

p(y|X) = / p(y 1. X) p(f) df

Prediction using GPs with different K (x,x’)

A sample from the prior for each covariance function:

fix)

f(x)

50
X

50
X

50
X

Corresponding predictions, mean with two standard deviations:

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {f,}"_,, given

corresponding inputs X = {x,}_;
one sample function

n=1

prior
p(f|X) = N(0,Ky)

X
Covariance: K,,,y = K(xn, X, ;80), hyperparameters 60

D (gl _ 5@ ’
K,, =uvexp ——Z

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {f,}"_,, given

corresponding inputs X = {x, }A_,
N function values

prior

f1

f|4f2
f3 fN I<N

X
Covariance: K,,,,y = K(x,,,X,;80), hyperparameters 0

2
K : i o))
— v ex — =
nn/ p 2 £~ ry

GP regression

Gaussian observation noise: y,, = f, + €,, where €, ~ N(0,c?)
sample data

L] ..”
ok PN . marginal likelihood
-0. ® :.o . :o’ o 1:.:.,:' .. . 2
A N SRS, S SN p(y|X) = N(0,Ky + o°1)
‘.‘. ..{ ‘..-,.,._.." *'-:‘,‘Z;.r ‘ °e .'--j_.{.:“
. e I o
s

predictive distribution
P(Y«l%, X, 5) = N (s, 07)

pe = Kin(Ky 4+ 0I) 7y
0! = K — Kin(Ky + 0°1) 'Ky, + 07

Problem: N3 computation

GP regression

Gaussian observation noise: y,, = f, + €,, where €, ~ N(0,c?)

sample data

Problem: N3 computation

2 _
o, —

marginal likelihood
p(y|X) = N(0,Ky + o°T)

predictive distribution
P(Y«l%, X, 5) = N (s, 07)

pe = Kivn(Ky + o)y
K.. — Kin(Ky + 0°) 'Ky, + 07

GP learning

Consider the covariance function K with hyperparameters @ = (vg, v1,71,...,74, Q):

D /144D _ (@) a
K (x;,x;) = vpexp —Z(: J) + U1

.
d—1 d

Given a data set D = (X,y), how do we learn 87

The marginal likelihood is a function of 6

p(y[X,8) = N(0,Ky + ¢°T)

where its log is:

1 1
Inp(y|X,0) = —51n det(Ky + 0°I) — in(KN + 0*I) "'y + const

which can be optimized as a function of 6.

Alternatively, one can infer 6 using Bayesian methods, which is more costly but
iImmune to overfitting.

From linear regression to GPs:

e Linear regression with inputs x; and outputs y;: v, = Bo + Bix; + €;
M
e Linear regression with M basis functions: y; = Z B Om(x;) + €;
m=1

e Bayesian linear regression with basis functions:

Bm ~ N(-|0, \,,) (independent of 3, V¢ # m), e; ~ N(-|0,07)

e Integrating out the coefficients, §;, we find:
def
Ely;] =0, Cov(yi, y;) = Kij = Z A O (@) dm (25) + 63507
This is a Gaussian process with covariance function K (z;, x;) = K;;.

This Gaussian process has a finite number (M) of basis functions. Many useful GP
covariance functions correspond to infinitely many basis functions.

A multilayer perceptron (neural network) with infinitely many hidden units and
Gaussian priors on the weights — a GP (Neal, 1992)

Using Gaussian Processes for Classification

Binary classification problem: Given a data set D = {(x;,y;)}I{, with binary class
labels y; € {—1,+1}, infer class label probabilities at new points.

1.5

— y=+1
1 — y=-1

1 05 0 05 1
X 1

There are many ways to relate function values f(x;) to class probabilities:

(1+expl(_yf) sigmoid (logistic)
_ O (y f) cumulative normal (probit)
Pylf) = < H(yf) threshold
L e+ (1 —2¢)H(yf) robust threshold

Again: non-Gaussian likelihood function, so we need to use approximate inference
methods (Laplace, EP, MCMC).

Sparse Approximations: Speeding up GP learning
(Snelson and Ghahramani, 2005, 2006, 2007)

We can approximate GP through M < N inducing points f to obtain this Sparse
Pseudo-input Gaussian process (SPGP) prior: p(f) = [df [], p(fn|f) p(f)

GP prior SPGP prior
B e
= u + X

e SPGP covariance inverted in O(M?*N) < O(N?) = much faster
e SPGP = GP with non-stationary covariance parameterized by X

e Given data {X,y} with noise o2, predictive mean and variance can be computed
in O(M) and O(M?) per test case respectively

Builds on a large lit on sparse GPs (see Quifionero Candela and Rasmussen, 2006).

Feature Selection

Example: classification

input x = (x,...,zp) € RP
output y € {+1,—1}

2P possible subsets of relevant input features.

One approach, consider all models m € {0, 1} and find

m = argmax p(D|m)
m

Problems: intractable, overfitting, we should really average

Feature Selection

e Why are we doing feature selection?
e What does it cost us to keep all the features?

e Usual answer (overfitting) does not apply to fully Bayesian methods, since they
don’t involve any fitting.

e We should only do feature selection if there is a cost associated with measuring
features or predicting with many features.

Note: Radford Neal won the NIPS feature selection competition using Bayesian
methods that used 100% of the features.

Feature Selection: Automatic Relevance Determination

Bayesian neural network

Data: D = {(x (n) y(”)) n=1 = (X,¥)
Parameters (Welghts). 0 = {{wi;}, {vi}}

prior p(0|a)

posterior p(0|a, D) x p(y|X,0)p(0|a)

evidence p(y|X,) fp (y|X,0)p(0|a) dO
prediction p(y'|D,x’,) = [p(y'|x/, 9) (0|D,) dO

Automatic Relevance Determination (ARD):

1

Let the weights from feature x4 have variance o " p(waj|ag) = N(0,a; ")

ag — 00 variance — 0 weights — 0 (irrelevant)
Let's think about this: o, < 0o finite variance weight can vary (relevant)

ARD: optimize & = argmax p(y|X, o).

During optimization some a4 will go to oo, so the model will discover irrelevant
inputs.

Feature Selection using ARD in GPs

Problem: Often there are many possible inputs that might be relevant to predicting
a particular output. We need algorithms that automatically decide which inputs are
relevant.

Automatic Relevance Determination:

Consider this covariance function:

-
1 2 (d) _ :C(C,l)
K,, s =vexp | —=

The parameter r, is the length scale of the function along input dimension d.

As 14 — 0o the function f varies less and less as a function of z(#), that is, the dth
dimension becomes irrelevant.

Given data, by learning the lengthscales (r1,...,7p) it is possible to do automatic
feature selection.

An example of ARD for classification

Data set: 6-dimensional data set with three relevant features and three irrelevant
features. For each data point #;, the relevant features depend on its class label:

5

ri 22, x3 ~ N(y;, 1), while the irrelevant features do not: xt, 22, 19

~ N(0,1).

Result: 174,75,7¢ — o0 improving the likelihood and classification error rates,
compared to a single-lengthscale model.

Methods single lengthscale | multiple lengthscales
log p(y|X, 0) -55.4480 -35.4119
Error rates 0.0600 0.0400

Example from (Kim and Ghahramani, 2004)
More on ARD and feature selection with thousands of inputs: (Qi et al, 2004).

Bayesian Discriminative Modeling

Terminology for classification with inputs x and classes y:

e Generative Model: models prior p(y) and class-conditional density p(x|y)

e Discriminative Model: directly models the conditional distribution p(y|x) or
the class boundary e.g. {x:p(y = +1|x) = 0.5}

Myth: Bayesian Methods = Generative Models

For example, it is possible to define Bayesian kernel classifiers (e.g. Bayes point
machines, and Gaussian processes) analogous to support vector machines (SVMs).

" BPM

(figure adapted from Minka, 2001)

