
Gaussian Processes

Zoubin Ghahramani

http://learning.eng.cam.ac.uk/zoubin/
zoubin@cs.cmu.edu

Statistical Machine Learning

CMU 10-702 / 36-702

Spring 2008

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)

Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function
mapping some input space X to <.

f : X → <.

Notice that f can be an infinite-dimensional quantity (e.g. if X = <)

Let f = (f(x1), . . . , f(xn)) be an n-dimensional vector of function values evaluated
at n points xi ∈ X . Note f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that finite subset p(f) has a multivariate Gaussian
distribution.

Gaussian process covariance functions

p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X , the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and a
covariance function, K(x, x′).

p(f(x), f(x′)) = N(µ,Σ)

where

µ =
[

µ(x)
µ(x′)

]
Σ =

[
K(x, x) K(x, x′)
K(x′, x) K(x′, x′)

]
and similarly for p(f(x1), . . . , f(xn)) where now µ is an n × 1 vector and Σ is an
n× n matrix.

Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and a
covariance function, K(x, x′).

An example covariance function:

K(xi, xj) = v0 exp
{
−
(
|xi − xj|

r

)α}
+ v1 + v2 δij

with parameters (v0, v1, v2, r, α)

These parameters are interpretable:

v0 signal variance
v1 variance of bias
v2 noise variance
r lengthscale
α roughness

Once the mean and covariance functions are defined, everything else about GPs
follows from the basic rules of probability applied to mutivariate Gaussians.

Samples from GPs with different K(x, x′)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

8

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

8

x

f(
x)

Using Gaussian processes for nonlinear regression

Imagine observing a data set D = {(xi, yi)n
i=1} = (X,y).

Model: yi = f(xi) + εi

f ∼ GP(·|0,K)

εi ∼ N(·|0, σ2)

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

p(y∗|x∗,D) =
∫

p(y∗|x∗, f,D) p(f |D) df

We can also compute the marginal likelihood (evidence) and use this to compare or
tune covariance functions

p(y|X) =
∫

p(y|f,X) p(f) df

Prediction using GPs with different K(x, x′)

A sample from the prior for each covariance function:

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(
x)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

f(
x)

Corresponding predictions, mean with two standard deviations:

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

gpdemo

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {fn}N
n=1, given

corresponding inputs X = {xn}N
n=1

one sample function

x

f

prior
p(f |X) = N (0,KN)

KN

Covariance: Knn′ = K(xn,xn′ ;θ), hyperparameters θ

Knn′ = v exp

264−1

2

DX
d=1

0@x(d)
n − x

(d)

n′

rd

1A2
375

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {fn}N
n=1, given

corresponding inputs X = {xn}N
n=1

f1

f2

f3 fN

N function values

x

f

prior
p(f |X) = N (0,KN)

KN

Covariance: Knn′ = K(xn,xn′ ;θ), hyperparameters θ

Knn′ = v exp

264−1

2

DX
d=1

0@x(d)
n − x

(d)

n′

rd

1A2
375

GP regression

Gaussian observation noise: yn = fn + εn, where εn ∼ N (0, σ2)
sample data

x

y marginal likelihood
p(y|X) = N (0,KN + σ2I)

predictive

x

y

predictive distribution
p(y∗|x∗,X,y) = N (µ∗, σ2

∗)

µ∗ = K∗N(KN + σ2I)−1y

σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2

Problem: N3 computation

GP regression

Gaussian observation noise: yn = fn + εn, where εn ∼ N (0, σ2)
sample data

x

y marginal likelihood
p(y|X) = N (0,KN + σ2I)

x∗

predictive

x

y

predictive distribution
p(y∗|x∗,X,y) = N (µ∗, σ2

∗)

µ∗ = K∗N(KN + σ2I)−1y

σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2

Problem: N3 computation

GP learning

Consider the covariance function K with hyperparameters θ = (v0, v1, r1, . . . , rd, α):

K(xi,xj) = v0 exp

−
D∑

d=1

(
|x(d)

i − x
(d)
j |

rd

)α
+ v1

Given a data set D = (X,y), how do we learn θ?

The marginal likelihood is a function of θ

p(y|X,θ) = N (0,KN + σ2I)

where its log is:

ln p(y|X,θ) = −1
2

ln det(KN + σ2I)− 1
2
y>(KN + σ2I)−1y + const

which can be optimized as a function of θ.

Alternatively, one can infer θ using Bayesian methods, which is more costly but
immune to overfitting.

From linear regression to GPs:

• Linear regression with inputs xi and outputs yi: yi = β0 + β1xi + εi

• Linear regression with M basis functions: yi =
M∑

m=1

βm φm(xi) + εi

• Bayesian linear regression with basis functions:

βm ∼ N(·|0, λm) (independent of β`, ∀` 6= m), εi ∼ N(·|0, σ2)

• Integrating out the coefficients, βj, we find:

E[yi] = 0, Cov(yi, yj) = Kij
def=
∑
m

λm φm(xi) φm(xj) + δijσ
2

This is a Gaussian process with covariance function K(xi, xj) = Kij.

This Gaussian process has a finite number (M) of basis functions. Many useful GP
covariance functions correspond to infinitely many basis functions.

A multilayer perceptron (neural network) with infinitely many hidden units and
Gaussian priors on the weights → a GP (Neal, 1992)

Using Gaussian Processes for Classification

Binary classification problem: Given a data set D = {(xi, yi)}n
i=1, with binary class

labels yi ∈ {−1,+1}, infer class label probabilities at new points.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

x

f

y = +1
y = −1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−5

0

5

xy

f

There are many ways to relate function values f(xi) to class probabilities:

p(y|f) =

1

1+exp(−yf) sigmoid (logistic)

Φ(yf) cumulative normal (probit)
H(yf) threshold

ε + (1− 2ε)H(yf) robust threshold

Again: non-Gaussian likelihood function, so we need to use approximate inference
methods (Laplace, EP, MCMC).

Sparse Approximations: Speeding up GP learning

(Snelson and Ghahramani, 2005, 2006, 2007)

We can approximate GP through M < N inducing points f̄ to obtain this Sparse
Pseudo-input Gaussian process (SPGP) prior: p(f) =

∫
df̄
∏

n p(fn|f̄) p(f̄)
GP prior
N (0,KN) ≈

SPGP prior
p(f) = N (0,KNMK−1

M KMN + Λ)

≈ = +

• SPGP covariance inverted in O(M2N) � O(N3) ⇒ much faster

• SPGP = GP with non-stationary covariance parameterized by X̄

• Given data {X,y} with noise σ2, predictive mean and variance can be computed
in O(M) and O(M2) per test case respectively

Builds on a large lit on sparse GPs (see Quiñonero Candela and Rasmussen, 2006).

Feature Selection

Example: classification

input x = (x1, . . . , xD) ∈ RD

output y ∈ {+1,−1}

2D possible subsets of relevant input features.

One approach, consider all models m ∈ {0, 1}D and find

m̂ = argmax
m

p(D|m)

Problems: intractable, overfitting, we should really average

Feature Selection

• Why are we doing feature selection?

• What does it cost us to keep all the features?

• Usual answer (overfitting) does not apply to fully Bayesian methods, since they
don’t involve any fitting.

• We should only do feature selection if there is a cost associated with measuring
features or predicting with many features.

Note: Radford Neal won the NIPS feature selection competition using Bayesian
methods that used 100% of the features.

Feature Selection: Automatic Relevance Determination

Bayesian neural network

Data: D = {(x(n), y(n))}N
n=1 = (X,y)

Parameters (weights): θ = {{wij}, {vk}}

prior p(θ|α)
posterior p(θ|α,D) ∝ p(y|X, θ)p(θ|α)
evidence p(y|X, α) =

∫
p(y|X, θ)p(θ|α) dθ

prediction p(y′|D,x′,α) =
∫

p(y′|x′,θ)p(θ|D,α) dθ

Automatic Relevance Determination (ARD):

Let the weights from feature xd have variance α−1
d : p(wdj|αd) = N (0, α−1

d)

Let’s think about this:
αd →∞ variance → 0 weights → 0 (irrelevant)
αd �∞ finite variance weight can vary (relevant)

ARD: optimize α̂ = argmax
α

p(y|X, α).

During optimization some αd will go to ∞, so the model will discover irrelevant
inputs.

Feature Selection using ARD in GPs

Problem: Often there are many possible inputs that might be relevant to predicting
a particular output. We need algorithms that automatically decide which inputs are
relevant.

Automatic Relevance Determination:

Consider this covariance function:

Knn′ = v exp

−1
2

D∑
d=1

(
x

(d)
n − x

(d)
n′

rd

)2

The parameter rd is the length scale of the function along input dimension d.

As rd →∞ the function f varies less and less as a function of x(d), that is, the dth
dimension becomes irrelevant.

Given data, by learning the lengthscales (r1, . . . , rD) it is possible to do automatic
feature selection.

An example of ARD for classification

Data set: 6-dimensional data set with three relevant features and three irrelevant
features. For each data point ~xi, the relevant features depend on its class label:
x1

i , x
2
i , x

3
i ∼ N (yi, 1), while the irrelevant features do not: x4

i , x
5
i , x

6
i ∼ N (0, 1).

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x4

Result: r4, r5, r6 → ∞ improving the likelihood and classification error rates,
compared to a single-lengthscale model.

Methods single lengthscale multiple lengthscales

log p(y|X,θ) -55.4480 -35.4119
Error rates 0.0600 0.0400

Example from (Kim and Ghahramani, 2004)

More on ARD and feature selection with thousands of inputs: (Qi et al, 2004).

Bayesian Discriminative Modeling

Terminology for classification with inputs x and classes y:

• Generative Model: models prior p(y) and class-conditional density p(x|y)
• Discriminative Model: directly models the conditional distribution p(y|x) or

the class boundary e.g. {x : p(y = +1|x) = 0.5}

Myth: Bayesian Methods = Generative Models

For example, it is possible to define Bayesian kernel classifiers (e.g. Bayes point
machines, and Gaussian processes) analogous to support vector machines (SVMs).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

SVM

BPM

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

SVM

BPM

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

SVM

BPM

(figure adapted from Minka, 2001)

