
10702/36702 Statistical Machine Learning, Spring 2008: Midterm

Solutions

March 17, 2008

1 Regression [25 points] (Robin)

Let X1 ∈ R and X2 ∈ R and

Y = m(X1, X2) + ǫ (1)

where E(ǫ) = 0.

(a) Consider the class of multiplicative predictors of the form m(x1, x2) = βx1x2. Let β∗ be the best
predictor, that is, β∗ minimizes E(Y − βX1X2)

2. Find an expression for β∗.

⋆ SOLUTION: R = E(Y − βX1X2)
2

∂R
∂β

= −2E(Y − βX1X2)X1X2 = 0

⇒ β∗ = E(Y X1X2)
E(X2

1
X2

2
)

(b) Suppose the true regression function is

Y = X1 + X2 + ǫ.

Also assume that E(X1) = E(X2) = 0, E(X2
1 ) = E(X2

2 ) = 1 and that X1 and X2 are independent.
Find the predictive risk R = E(Y − β∗X1X2)

2 where β∗ was defined in part (a).

⋆ SOLUTION:

β∗ =
E(Y X1X2)

E(X2
1 )E(X2

2 )
= E(Y X1X2)

= E((X1 + X2 + ǫ)(X1X2))

= E(X2
1X2 + X1X

2
2 + X1X2)

= 0

Hence, E(Y − βX1X2)
2 = E(Y 2)

= E((X1 + X2 + ǫ)2)

= E(X2
1 + X2

2 + ǫ2 + 2X1X2 + 2X1ǫ + 2X2ǫ)

= 2 + E(ǫ2)

(c) We are given n observations (X1, Y1), . . . , (Xn, Yn) from (1). Give an estimator β̂n for β∗ and show
that it is consistent.
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⋆ SOLUTION: β̂ =
1

n

P

YiX1iX2i

1

n

P

X2

1i
X2

2i

1
n

∑

YiX1iX2i
p−→ E(Y X1X2)

1
n

∑

X2
1iX

2
2i

p−→ E(X2
1X2

2 ) ∴ β̂ −→ β

2 Bayes and Minimax [25 points] (Jingrui)

Let X1, . . . , Xn ∼ f(x; θ) where f(x; θ) is a distribution from the family of distributions

P = {f(x; θ) : θ ∈ Θ}.

Let the loss function for an estimator θ̂ be

L(θ, θ̂) = (θ − θ̂)2

(a) Define the risk function R(θ, θ̂).

⋆ SOLUTION:

R(θ, θ̂) = E[L(θ, θ̂)]

(b) Define the minimax estimator.

⋆ SOLUTION: θ̂ minimizes supθ R(θ, θ̂).

(c) Let π(θ) denote a prior distribution. Define the Bayes’ estimator θ̂π with respect to π.

⋆ SOLUTION: θ̂π minimizes Rπ =
∫

R(θ, θ̂)π(θ)dθ.

(d) Show that the Bayes estimator is

θ̂π = E(θ|X1, . . . , Xn).

⋆ SOLUTION: Rπ =
∫

[
∫

(θ − θ̂)2f(θ|X1 = x1, . . . , Xn = xn)dθ]m(x1, . . . , xn)dx1 . . . , dxn. Taking

the partial derivative of
∫

(θ − θ̂)2f(θ|x1, . . . , xn)dθ with respect to θ̂, we have

∂

∂θ̂

∫

(θ − θ̂)2f(θ|x1, . . . , xn)dθ = 2

∫

(θ̂ − θ)f(θ|x1, . . . , x + n)dθ

Setting it to 0, we get θ̂ =
∫

θf(θ|x1, . . . , xn)dθ = E(θ|X1, . . . , Xn).

(e) Suppose that R(θ, θ̂π) = c for some constant c. Show that θ̂π is minimax.

⋆ SOLUTION: Let θ̃ be any other estimator, then

sup
θ

R(θ, θ̃) ≥
∫

R(θ, θ̃)π(θ)dθ ≥
∫

R(θ, θ̂π)π(θ)dθ = c = sup
θ

R(θ, θ̂π)

Therefore, θ̂π is minimax.

2



3 Model Selection [25 points] (Robin)

Suppose we have the following data: (X1, Y1), . . . , (Xn, Yn) where Yi ∈ R and Xi ∈ R
p. Assume that p < n.

Also assume that
Yi = XT

i β + ǫi

where ǫi has mean 0. Let X be the n× p design matrix, that is, X(i, j) = Xij . Suppose that X
T

X = I where
I is the p × p identity matrix. (We say that the design matrix is orthogonal.)

(a) Recall that the ridge regression estimator is

β̂ = (XT
X + λI)−1

X
T Y

where Y = (Y1, . . . , Yn)T . Find the predictive risk of m̂(x) = xT β̂. Hint: first find the mean and

variance of β̂.

⋆ SOLUTION: β̂ = (XT X + λI)−1XT Y = (I + λI)−1XT Y = 1
1+λ

XT Y = 1
1+λ

XT [Xβ + ǫ] =
β

1+λ
+ 1

1+λ
XT ǫ

β̄ = E(β̂) = β
1+λ

V (β̂|X) = σ2

(1+λ)2 XT X = σ2

(1+λ)2 I

Also, β − β̄ = λ
1+λ

β

S = V (β̂|X) = ( σ
(1+λ) )

2I R = E(Y − XT β̂)2

E(Y − XT β̂)2 = E(Xβ + ǫ − XT β̂)2

= E[(β̂ − β)T XXT (β̂ − β)] + σ2

= E[(β̂ − β̄)T XXT (β̂ − β̄)] + 2E[(β̂ − β̄)T XXT (β̄ − β)] + E[(β̄ − β)T XXT (β̄ − β)] + σ2

=

p
∑

j=1

E(X2
j )[(

λ

1 + λ
)2β2

j + (
σ

1 + λ
)2] + 0 + (

λ

1 + λ
)2βT E(XXT )β + σ2

(b) Still assuming that the design matrix is orthogonal, show that it is possible to find the lasso estimator
without using iterative algorithms or quadratic programming. Hint: consider the transformed response
Z = X

T Y .

⋆ SOLUTION: Z = XT Y = XT (Xβ + ǫ) = β + XT ǫ
Z ∼ N(β, σ2)
Apply soft thresholding to Z

4 Convex Duality [25 points] (Jingrui)

Let Xi ∼ Bernoulli(θ) be independent, with observations {X1, X2, X3} = {0, 1, 0}. Thus, P(Xi = 1) = θ and
P(Xi = 0) = 1 − θ where 0 ≤ θ ≤ 1. Consider the optimization problem

min
θ

f(θ)

such that θ ≥ 1/2

where f(θ) is the negative log-likelihood.

(a) What is the solution to this problem?
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⋆ SOLUTION: The likelihood is L = θ(1 − θ)2. Therefore, f(θ) = − log θ − 2 log(1 − θ), which is

a convex function. Let
∂f(θ)

∂θ
= 0, we get θ̂ = 1/3. However, this solution does not satisfy the constraint.

When θ ≥ 1/2, f(θ) is a decreasing function. Therefore, the solution to this problem is θ̂ = 1/2.

(b) Write the Lagrangian.

⋆ SOLUTION:

L(θ, λ) = − log θ − 2 log(1 − θ) + λ(
1

2
− θ)

(c) Derive the dual problem.

⋆ SOLUTION:
∂L(θ,λ)

∂θ
= − 1

θ
+ 2

1−θ
− λ = 0. Therefore, λθ2 + (3 − λ)θ − 1 = 0, and θ∗ =

λ−3+
√

(λ−3)2+4λ

2λ
. The dual function: l(λ) = − log θ∗ − 2 log(1 − θ) + λ(1

2 − θ∗).

(d) State the KKT conditions.

⋆ SOLUTION:

− 1

θ∗
+

2

1 − θ∗
− λ∗ = 0

1

2
− θ∗ ≤ 0

λ∗ ≥ 0

λ∗(
1

2
− θ∗) = 0

5 Regularization [25 points] (Robin)

Let Y be the random variable
Y = µ + ǫ

where ǫ ∼ N(0, 1) and µ ∈ R in a constant. The elastic net estimator µ̂ is defined to be the value of µ that
minimizes

M(µ) = (Y − µ)2 + λ|µ| + αµ2

where λ, α > 0. Find µ̂.

⋆ SOLUTION:
∂M
∂µ

= −2(Y − µ) + λz + 2αµ

where z =







1 if µ > 0
−1 if µ < 0

∈ [−1, 1] if µ = 0

When µ = 0, −2Y + λz = 0 Y = λz
2 ∴ µ̂ = 0 if |Y | ≤ λ

2

When µ > 0, −2(Y − µ) + λ + 2αµ = 0 ∴ µ̂ = 2Y −λ
2(1+α)

When µ < 0, −2(Y − µ) − λ + 2αµ = 0 ∴ µ̂ = 2Y +λ
2(1+α)

µ̂ =











2Y −λ
2(1+α) Y > λ/2

0 |Y | ≤ λ/2
2Y +λ
2(1+α) Y < −λ/2
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6 Mixture Models [25 points] (Jingrui)

Let (Z1, Y1), . . . , (Zn, Yn) be generated as follows:

Zi ∼ Bernoulli(p)

Yi ∼
{

N(0, 1) if Zi = 0
N(5, 1) if Zi = 1

(a) Assume we do not observe the Zi’s. Write the distribution f(y) of Y as a mixture.

⋆ SOLUTION:

f(y) = pφ(y − 5) + (1 − p)φ(y)

where φ(·) is the pdf of a standard normal distribution.

(b) Write down the likelihood function for p.

⋆ SOLUTION:

L(p) =
n

∏

i=1

[pφ(yi − 5) + (1 − p)φ(yi)]

(c) Write down the complete likelihood function for p (assuming the Zi’s are observed).

⋆ SOLUTION:

L(p) =

n
∏

i=1

[pzi(φ(yi − 5))zi(1 − p)1−zi(φ(yi))
1−zi ]

(d) Find a consistent estimator of p that avoids using EM.

⋆ SOLUTION: E(Y ) = 5p + 0(1 − p) = 5p. Let p̂ = Ȳ
5 . E(p̂) = p. According to Law of Large

Numbers, p̂ converges to E(p̂) in probability. Therefore, p̂ is a consistent estimator of p.

7 Classification [25 points] (Robin)

Suppose that P(Y = 1) = P(Y = 0) = 1
2 and

X |Y = 0 ∼ Uniform on S0

X |Y = 1 ∼ Uniform on S1

where S0 is the square in R
2 with corners (1, 1), (1,−1), (−1, 1), (−1,−1) and where S1 is the square in R

2

with corners (0, 0), (2, 0), (2, 2), (0, 2).

(a) Find an expression for the Bayes classifier and find an expression for the Bayes risk.
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⋆ SOLUTION:

A = S0 − (S0 ∩ S1)

B = S0 ∩ S1

C = S1 − (S0 ∩ S1)

h∗(x) =







1 x ∈ C
0 x ∈ A

either x ∈ B

Bayes Risk R = P (Y 6= h∗(x)) = 1
2P (B) = 1

2
1
4 = 1

8

(b) What is the best linear classifier?

Any classifier that preserves A & C. For e.g., X1 + X2 = 1

8 Graphical Models [25 points] (Jingrui)

Let X = (X1, X2, X3, X4) be a random vector and consider the graph:

2
X

1
X

4
X

3
X

(a) List the local Markov properties.

⋆ SOLUTION:

X1 ⊥ X3|X2, X4

X2 ⊥ X4|X1, X3

(b) List the global Markov properties.

6



⋆ SOLUTION:

X1 ⊥ X3|X2, X4

X2 ⊥ X4|X1, X3

(c) Assume that all the variables are binary. Write down a graphical loglinear model for this graph.

⋆ SOLUTION:

log P = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2 + β23x2x3 + β34x3x4 + β41x4x1

(d) Write down a nongraphical loglinear model for this graph.

⋆ SOLUTION: Many solutions are OK for this problem. For example,

log P = β0 + β12x1x2 + β23x2x3 + β34x3x4 + β41x4x1
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