10702/36702 Statistical Machine Learning, Spring 2008: Homework
1 Solutions

February 6, 2008

1 [14 points]

Let © be a finite set. Let L(6,0) = 0if @ = 6 and L(0,) = 1 otherwise. Show that the posterior mode is
the Bayes estimator.

% SOLUTION:
Drages = argming #(0]2)
= argming /L(G,é)w(9|x)d9
= argming /1(9 + 0)m(0]x)do
= argming [1— /1(9 = ) (0]x)d0]
= argming [1— P(0)z)]

= argmaz; P(0)z)

= posterior mean

2 [30 points]
Let X ~ N(6,1). Suppose that § € © = [-C, C] where C' = 1/2. Assume squared error loss.
(a) Verify that § = C'tanh(CX) is minimax. Hint: Show that 0 is the Bayes estimator under the prior

m=(1/2)0_c+ (1/2)0c where ¢, denotes a distribution that puts probability 1 at a. You may assume
that R(6,0) has the following properties: it is continuous, symmetric about 0 and increasing on [0, c].

% SOLUTION: Under the given prior, the posterior probability
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7(0|X) =0, if 0 £ C and 0 # —C



With squared error loss, the Bayes estimator is the posterior mean, i.e.

E(9)X)=C-n(0 = C|X)—C-n(0 = —C|X) = Ctanh(CX) =0

The Bayes risk Ry (6) = (6 = C)R(C,0)+7(0 = —=C)R(=C,6). R(6,0) = [(6—6)* = exp(— 5 )do =

J(Ctanh(Cz)—0)? \/% exp(— (9“20)2 )dz. Since R(6,6) is continuous, symmetric about 0 and increasing

on [0, C], we have Rﬁ(é) = R(C, é) > R(0, é), V0 € [-C, C]. According to Theorem 4, 6= C'tanh(CX)
is minimax.

(b) Find the mle (maximum likelihood estimator) 6.

% SOLUTION: The mle: O, = X, if —-C < X < C; Opppe = C, if X > C; Oy = —C, if X < —C.

(¢) Find the risk of the mle.

Y SOLUTION: The risk of the mle:

+oo
R0, Omic) = Fo(0 — Oa)?) = / (0 — D) (2 0)de
-c 2 +o00 2
1 (x—0) 1 (x—0)

_ 2 _ — O —— _
= [m 0+C) mexp( 5 )dx—!—/c 0—0C) \/ﬁexp( 5 Ydz

c 2

1 (x—0)
j— 2 f—
+ [0(0 x) Nors exp( 5 Ydx
(0 + C)2D(—0 — C) + (0 — C)2®(0 — C) + /C (0 — 2)2 —— exp(— T = o) )dz
= — —_— _— _— _— X p—
_C V2T P 2
Where ®(-) is the standard normal cdf.
(d) Plot the risk functions of these two estimators.

* SOLUTION:

3 [20 points]
Let X ~ Binomial(n, 6).

(a) Find a minimax estimator. Hint: Consider a Bayes estimator based on beta prior.



% SOLUTION: X ~ Binomial(n,#) 0 ~ Beta(a, 3)

m(@lz) o f(x]0)m(0)
x (") 6% (1 — )"0 (1 - 0)°

T
0a+m71 (1 _ 9)n+67m71

Hence, 6lx ~ Beta(a+x,n+03—x)

R a+x
ayes — E e — 1
O@nsyes = B(r(0f) = 2 (1)
R(0,0) = biasa(h) + Varg(6)
a+x 2 a+x
= [Ey(0 — —— Varg(——————) ... (f 1
[Eo ( n+a+6)]+ar0(n+a+ﬁ) (from 1)
_ 0%[(a + B)? —n] + 0[n — 2a(a + B)] + o?
(n+a+ 07
R(0,0) is constant in 6 if (a« + )% = n and 2a(a + () = n.
Solving these equations we get the following values:
n
a=p=Y" @)
Substituting eq. 2 into eq. 1, we get
0(2) mini = ﬂ
minimaxr — n+ \/ﬁ

(b) Plot the risk of the minimax estimator, the mle and the Bayes estimator using a flat prior, for n =
5,50, 100.

A~ 2

% SOLUTION: Minimax Risk: R(0,0minimaz) = (n,+2+[3)2 = 4(\/51“)2
MLE estimate:

~ x
omle = -

MLE Risk:
R(0,0,e) = bias2(d) + Varg(0)

_ E(x) o z

= (0 =)+ Vars(-)

0 1

(1 —10)
n
Bayes estimate with flat prior is equivalent to Beta(1,1) prior. Hence using eq. 1,

r+1

ebayes = n—_|_2



Bayes Risk:
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4 [36 points]

This question will help you explore the differences between Bayesian and frequentist inference. Let X;,..., X,
be a sample from a multivariate normal distribution with mean g = (y1,..., )7 and covariance matrix
equal to the identity matrix I. Note that each X; is a vector of length p.

The following facts will be helpful. If Z3,..., Z; are independent N(0,1) and a1, ...,a) are constants,

then we say that ¥ = Z?Zl(Zj + a;)? has a non-central x? distribution with k degrees of freedom and
noncentrality parameter |lal|?. The mean and variance of Y are k + ||a||? and 2k + 4al|?.

(a) Find the posterior under the improper prior m(u) = 1.

% SOLUTION:
7T(/’L|Xla s aXn) X Ln(lu)ﬂ-(iu)

= TTi@m) "2 exp(— i — 6)" (s — )]
=1
x exp(—5 (1 — &) (n— 7))

where T = %Z?:l x;. Therefore, the posterior of y is multivariate Gaussian with mean % and covariance
1
matrix —Ipxp.

(b) Let 6 = ?:1 ,u?. Our goal is to learn 6. Find the posterior for 6. Express your answers in terms of

noncentral x? distributions. Find the posterior mean 0.



* SOLUTION: Vj € [l,...,p], m(v/nu;|X1,...,Xn) ~ N(y/nz;, 1), where T; = L 3" a5 There-
fore, m(nf|X1,..., Xyn) ~ x2(n]Z||?), and the posterior mean 6 = LE(nf|X1,...,X,) = L(p+n|z|?) =
B+ z)>.

The usual frequentist estimator is 6 = || X||2 — p/n. Show that, for any n,

Eql|0 — 9H2

Eoll6— 07
as p — 0.
* SOLUTION: Vj € [1,...,p], X; = %27: It is easy to see that X; ~ N(u;,1/n), and
VX~ N(y/np;, 1). Therefore, n||X||2 ~ xp(nlull® ) Eo|I X2 =L+ |ull* =2+, and Vo(| X|?) =
2 | Al _ 2p a0
Eql|0 — 9H2 (0 — Eg0)* + Vo(0) = (B[ X |12 + & — 0)* + Vy (|| X|?) = Lip + 2+
Eo[|0 — 0] = (0 — Eg0)* + Vo(0) = (Eo[| X||* — £ — 0)* + Vo (| X|?) = 2 + 2.
Therefore, for any n, as p — oo
Bll0-0)? _ Yo+t
Bollo—0|7 ~ ~ Z+w
Repeat the analysis with a N(0,721) prior.
% SOLUTION: By similar analysis, we have 7(u|X1,...,X,) ~ (m—l,m—fpxp) m((n +
5)0|X1,..., Xp) ~ Xl%(nﬁ% |Z||?). Therefore, the posterior mean 6 = n+ et WHT‘H

~ 2n+ L+
Boll6 — 012 = (6~ Baf)? + Vo(8) = (Bol( s 1K1 + g — 002 + Vgt 1K) = (iep -
2!L+ 1 n2
(n+ 9) qrEs (2p + 4nb).
Therefore, for any n, as p — oo
2n+7 7'+T—14 .

Eollo—0]2 (G D2P~ (ar 1) e L - T (2pand) .
Eoll0—0IF — 7+ >

Set n = 10, p = 1000, # = (0,...,0)T. Simulate (in R) data N times, with N = 1000. Draw a
histogram of the Bayes estimator (with flat prior) and the frequentist estimator.

% SOLUTION: The histograms are as follows.

150

150

=
o
=)
T
=
o
=]

Frequency
Frequency

50 501

0
200 205 210 215 220 -20 -15 -10 -5 0 5 10 15 20

memeayes thetab:vequennsz

190 195



(f) Interpret your findings.

% SOLUTION: From the figures, we can see that the two histograms have the save shape, and the
frequentist estimator has less bias compared with the Bayes estimator. According to (c), we can see that
the frequentist estimator (§ = || X||? — £) is unbiased § — Egf = 6, whereas the Bayes estimator with flat

prior (0 = || X||? + 2) is biased, § — Egf = 22. This bias is significant when p is much larger than 7.

n '’



