CHAPTER 3. Expectation

3.1. Expectation of a Random Variable

The expectation of a random variable X — denote by ux or E(X) or EX —
is the mean (or first moment) of the distribution of the variable. It is defined
by E(X) = Y, xfx(z) in the discrete case and E(X) = [zfx(x)dx in the
continuous case, assuming the sum and integral are well defined. We say that
E(X) is the mean of X or sometimes we use the terminology, E(X) is the
mean of the distribution of X. The expectation is a one-number summary
of the distribution.

Important Notation. We shall sometimes write E(X) = [z dF(x).
You should interpret [z dF(z) to mean [z f(z)dz in the continuous case
and >, = f(x) in the discrete case.

If we repeated the experiment many times and averaged the outcomes,
this average will (approximately) be E(X). We will make this last point
more precise when we discuss the law of large numbers. The expectation is
also the “balancing point” of the mass.

To ensure that E(X) is well defined, we say that E(X) exists if [, |z|dFx(z) <
oo. Otherwise we say that the expectation does not exist.

EXAMPLE. 3.1.1. Flip a fair coin two times. Let X be the number of
heads. Then, E(X) = [zdFx(z) = Y, zfx(z) = (0 x f(0)) + (1 x f(1)) +
(2% f(2)=(0x(1/4)+ 1 x(1/2))+ (2% (1/4)) = 1.

EXAMPLE. 3.1.2. Let X ~ Unif(=1,3). Then, E(X) = [ zdFx(z) =
[zfx(z)dz =1 zdz = 1.

EXAMPLE. 3.1.3. A random variable has a Cauchy distribution if it has
density fx(z) = {m(1 +2%)}~'. To see that this is indeed a density, let’s do
the integral:
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But, using integration by parts, (set v = x and v = tan™! ),
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so the mean does not exist. If you simulate a Cauchy distribution many times

and take the average, you will see that the average never settles down. This

is because the Cauchy has thick tails so extreme observations are common.

From now on, whenever we discuss expectations, we implicitly assume
that they exist.

Let Y = r(X). How do we compute E(Y)? One way is to do a change of
variables, find fy(y) and then compute E(Y) = [y fy(y)dy. But there is an
easier way.

THEOREM. 3.1.4. (The rule of the lazy statistician.) Let ¥ = r(X).

Then
E(Y) = / r(z)dFx (z).

This result makes intuitive sense. Think of playing a game where we
draw X ~ fx at random. Then I pay you Y = r(X). Your average income is
r(z) times the chance that X = z, summed (or integrated) over all values of
x. This makes it easy to compute F(Y); no change of variables is required.
Here is an important special case. Let A be an event and let r(x) = I4(x)
where I4(x) = 1if £ € A and I4(z) = 0if x ¢ A. Then EI4(X) =
[I1a(z)fx(x)dz = [, fx(x)de = P(X € A). So, probability is a special case
of expectation.

THEOREM. 3.1.5. Let X ~ Unif(0,1). Let Y = r(X) = ¢*. Then,

E(Y) :/Olezf(x)dx = /Ole’”dx =e—1.

Alternatively, you could find fy(y) which turns out to be fy(y) = 1/y for
l<y<e. Then, E(Y)= [y fly)dy=e—1.
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Functions of several variables are handled in a similar way. If Z = r(X,Y)
then E(Z) = [ [ r(z,y)dzdy.

EXAMPLE. 3.1.6. Let (X,Y’) have a jointly uniform distribution on the
unit square. Let Z =7(X,Y) = X2 + Y2 Then,

11 9
= / / (2% + y*)dzdy = =.
0o Jo 3

EXAMPLE. 3.1.7. Take a stick of unit length. Break it at random. Let
Y be the length of the longer piece. What is the mean (expectation) of Y7
Let X be the break point so that X ~ Unif(0,1). Note that Y = r(X) =
max{X,1 — X}. Thus, r(z) =1 — 2 when 0 < z < 1/2 and r(z) = = when
1/2z < 1. Hence,

1

E(Y)= /r(x)f(ac)d:c = /01/2(1 —z)dx + xdr = 2

1/2

3.2. Properties of Expectations

Expectations possess the following properties. (Again, we assume that
all the expectations are well-defined.)

Expectation is a linear operator: if ¢ and b are constants, then E(aX +
bY) =aE(X) 4+ bE(Y). Also, if ¢ is a constant then E(c) = c.

More generally, if X;,...,X,, are random variables and a4,...,a, are
constants, then

E (Z az-Xz) - S u(x

EXAMPLE. 3.2.1. Let X ~ Binomial(n,p). What is the mean of X7
We could try to appeal to the definition:

E(X):/xdFX(x):foX Zx() (1—p)""

x

but this is not an easy sum to evaluate. Instead, use the following trick.
Let X; = 1 if the ™ toss is heads and X; = 0 otherwise. Now, E(X;) =

p(1)+ (1 —=p)(0) = p. Also note that X =Y, X;. Thus, E(X) = E(X; X;) =
¥ B(X;) = np.



THEOREM. 3.2.2. Let Xi,...,X, be independent random variables.
Then,

E <f[l Xi) = H E(X)).

Notice that the summation rule does not require independence but the
multiplication rule does.

EXAMPLE. 3.2.3. Let X; ~ Bin(1,p;) and X, ~ Bin(1, py) and suppose
that X1 1I XQ. Then

E(Xi(1-Xy)) = BE(X1—X1Xy) = E(Xy)—E(X1X2) = p1—pip2 = p1(1—po).

EXAMPLE. 3.2.4. Suppose we play a game where we start with ¢ dollars.
On each play of the game you either double or half your money, with equal
probability. What is your expected fortune after n trials? Define

|

= (o3 (312) -

Let Y,, denote your fortune after n trials. Then, ¥ = ¢X;---X,. Hence,
E(Y)=cE(X; - -X,) =c(5/4)".

V]

if you win on trial ¢
if you lose on trial 7.

N[ =

Now,

3.3. The Variance of a Random Variable

Let X be a random variable with mean y = pux = F(X). We define
the variance of X — denoted by o2 or 0% or Var(X) or V(X) or VX — by
0?> = E(X — p)? (assuming this expectation exists). Imagine drawing X at
random. Then, 0 measures how far X is from its mean (in squared distance)
on average. In a sense, 02 measure how “spread out” the distribution of X
is. When o is small, the distribution of X is tightly concentrated around its

mean. We define the standard deviation by o = /Var(X).

THEOREM. 3.3.1. Assume that the variance of X is well-defined. Then
Var(X) = 0 if and only if there is a constant ¢ such that P(X =¢) =1. In
this case we say that X has a point mass distribution.
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PROOF. Suppose that P(X = ¢) = 1. Then F(X) = ¢. Now, (X — ¢)?
is 0 with probability 1. Thus, F(X — ¢)? = 0 x 1 = 0. Now suppose that
Var(X) =0. Let ¢ = E(X) and define Y = (X — ¢)%. Note that Y > 0 and
has mean 0. Hence, P(Y = 0) = 1 i.e. P((X —¢)? =0) = 1 which implies
that P(X = ¢) = 1.

Here are some properties of the variance that follow easily from its defi-
nition.

Property 1: If a and b are constants then Var(aX + b) = a*Var(X).
Hence, if Y = aX + b then oy = aox.

Property 2: The variance can be written as Var(X) = E(X?) — p*

Property 3: If X;,..., X, are independent and a4, ..., a, are constants,
then Var(Y,; a;X;) = 3 a2Var(X;).

REMARK: The additivity property holds for expectations whether or not
the random variables are independent. But for variances, we need indepen-
dence.

EXAMPLE. 3.3.2. Let X ~ Bin(n,p). Find Var(X). We can solve this
as we did with the expectation. We write X = Y, X; where X; =1 if toss ¢
is heads and X; = 0 otherwise. Then X = >, X; and the random variables
are independent. Also, P(X; = 1) = p and P(X; = 0) = 1 — p. Recall that
E(X;) = (px 1)+ (px0) = p. Now, E(X?) = (px1%) + (p x 0?) = p.
So, using property 2, Var(X;) = E(X?) —p*> = p — p*> = p(1 — p). Finally,
Var(X) =Var(3X; X;) = X Var(X;) = X;p(1 — p) = np(1l — p).

A BIT OF STATISTICS. Let us pursue the last example a bit more.
Suppose we toss a possibly biased coin n times and get X heads. How can
we estimate the unknown parameter p from the data? Intuitively, we might
use p = X/n. We will justify this estimator later in the course. For now, note
that p is a random variable. Let us compute its mean and standard deviation.
The mean is computed as E(p) = E(X/n) =n"tE(X) = n"tnp = p. Thus,
the estimator has the right value as its mean. Now Var(p = Var(X/n) =
n~2Var(X) = n2np(1 — p) = p(1 — p)/n. Thus, o5 = {p(1 —p)/n}"".
The important thing to notice is that the standard deviation is decreasing in
sample size at rate n~'/2.



EXAMPLE. 3.3.3. Let X ~ Unif(a,b). Find the variance of X. Of
course, f(z) = ¢ =1/(b—a) for a < x < b and 0 otherwise. Then, p =
JPaf(x)de = (a+b)/2. Next,

b b3_ 3
E(XQ):/G ac2f(x)da::%(b_z).
Finally,
b —a® b\*> _ (b—a)?
Var(X)zE(XQ)—,uZ:%(b_Z)—<a; ) :( 12a) )

3.4. Moments

The k™ moment of X is defined to be F(X*) assuming that E(|X|¥) < oco.

THEOREM. 3.4.1. If the k' moment exists and if j < k then the j*
moment exists.

PROOF. We shall prove the continuous case. We have

BXY = [ Jafix(@)ds

:/ |x\ij(a:)da:+/ 2 fx (2)dz
|z|<1 |z|>1

| fx@da+ [ el (@)
|z|<1 |z|>1

< 14+ E(XF) < oo

IN

The k™ central moment is defined to be E((X — p)¥). Thus, the first
central moment is 0 and the second is just the variance.

3.5. “Equals in Distribution” and Symmetry

Two random variables X and Y are equal in distribution if they have
the same cdf i.e. Fx(c) = Fy(c) for all c. We write X < Y. If you and I
each generate a number from the same random number generator then our
random numbers are equal in distribution. It does not mean that we will get
the same number. Rather it means that we will make identical probability

statements about our numbers. Avoid the temptation to treat £ like an
ordinary equals sign.



A random variable X has a symmetric distribution if X 4 _X. IfX
has pdf fx and X is symmetric, then fx(z) = fx(—z). To see this, note
that Fx(z) = P(X <z) =P(-X > —2) =1-P(-X < —x) =1-—
F x(—z) =1 — Fx(—x) since Fx(c) = F_x(c) for all ¢. Differentiating we
get fx(z) = fx(—2).

Let us compute the mean of X. We get

o0

E(X) = / ofx(x)dz

—0o0

= /OOO zfx(z)dz + /Ooo zfx(z)dz

= —/ooufx(—u)du+/oo:rfx(x)dx U=—x
0 0

= —/ qu(u)du+/ zfx(x)dr symmetry
0 0
= 0.
3.6. The Median and the Mean

The median of X is defined by m = Fy'(1/2). DeGroot defines it slightly
differently. One way to think about the median and mean is as solutions to
predictions problems. Suppose you have to provide a guess at the random
variable X. Let u = E(X) and let 02 = Var(X). What is your best guess of
X7 The answer depends on how we decide to measure our “loss.” Suppose
that d is your guess (or prediction) of X. Suppose further that when the
value of X is known, you will be penalized (X — u)?. The “risk,” or average
loss is defined as r(d, u) = E(X — d)?. If we differentiate 7 with respect to d
and set the derivative equal to 0, we conclude that the risk is minimized by
choosing d = p. In summary, the mean is the best one-number prediction of
X assuming squared-error loss.

Now suppose that the loss is | X — d| (mean absolute deviation or MAD).
The risk is now r(d, u) = E|X — d|. It can be shown that the median is the
optimal prediction.

3.7. Covariance and Correlation

Let X and Y be random variables with means px and py and stan-
dard deviations ox and oy. Define the covariance between X and Y by
Cov(X,Y)=FE[(X — ux)(Y — uy)]. The correlation is defined by

Cov(X,Y
p= sy =pX¥) = 0



THEOREM. 3.7.1. Assuming the appropriate moments exist, —1 <
p(X,Y) <1

LEMMA. 3.7.2. (The Cauchy-Schwartz inequality.) Assuming that U
and V possess second moments, [E(UV)]? < EU?EV?.

PROOF. Note that 0 < E(aU +bV)? = a? EU? +0?EV2+2abE(UV). Set
a = VEU? and b = vV EV? and rearrange the above inequality to conclude
that E(UV) > —VFEU2EV?2. Similarly, by rearranging 0 < E(aU — bV)? =
a>’EU? + v’EV? — 2abE(UV) conclude that E(UV) < v EU2EV?2.

PROOF OF THEOREM 3.7.1. We apply the Cauchy-Schwartz inequality
to get

Cov(X,Y)? = [E(X — ux)(Y — py)* < B(X — px)*E(Y — py)* = %07

Hence,
2 _ Cov(X,Y)? < 0% 0%

okoy T oxoy

p(X,Y) =1

Properties of Covariance.

(1) Cov(X,Y) = B(XY) = E(X)E(Y).

(2) f XTIY then Cov(X,Y) = p(X,Y) =0.

The converse of property (2) is false. There are dependent random vari-
ables for which Cov(X,Y) = 0. For example, if P(X = -1,V = 1) =
P(X=0,Y=0)=PX=1Y =1)=1/3, then X and Y are dependent
but Cov(X,Y) = 0.

We have seen that, for independent random variables, V(X +Y) =
V(X) + V(Y). The corresponding formula for non-independent variables
follows easily from the definition of covariance.

THEOREM. 3.73. V(X +Y) =V(X)+V(Y)+2Cou(X,Y) and V(X —
V) =V(X)+ V(YY) —-2Cov(X,Y). More generally, for random variables
Xy, X,

Var (2 Xi> = 3 Var(X) + 250 X Con(X, ;).

1<j

3.8. Conditional Expectation



Suppose that X is a random variable with expectation E(X). Now sup-
pose we observe the value of a second random variable Y. How should we
change the expectation of X to account for this information?

Before observing Y, we computed the mean of X via E(X) = [z fx(x)dx.
After we observe that Y = y, we replace fx(z) with fxy(z|y). We compute
the conditional expectation of X given that Y =y using fxy(z|y):

BX|Y =y) = [ afxy(@ly)ds.

We shall sometimes also denote E(X|Y =1y) by ux(y). Whereas, E(X) is a
number, note that E(X|Y = y) is a function of y. The value of E(X|Y = y)
depends on the observed value of Y. Before we observe Y, we don’t know the
value of the conditional expectation so it is a random variable. We denote
this random variable by E(X|Y) or pux(Y).

To summarize, F(X|Y) is a random variable; it depends on Y. The
value of the random variable E(X|Y') once Y = y is observed is denoted by
E(X]Y = y) and is calculated by the formula E(X|Y = y) = [z fxy(z|y)dz.

Similarly, we can define py (X) = E(Y|X) and py(z) = E(Y|X =z). In
statistics and machine learning, X often denotes characteristics of a person
(age, blood pressure, etc.) and Y denotes some variable we wish to predict
(such as life length). In this case, py(z) is called the regression of Y on X.
In some cases, one assumes that py () has a simple form, for example linear.
This is called parametric regression. In other cases, uy(x) is only assumed
to be some smooth function. This is called nonparametric regression. We
shall discuss these issues later.

EXAMPLE. 3.8.1. Suppose we draw X ~ Unif(0,1). After we ob-
serve X = z, we draw Y |X = z ~ Unif(z,1). Intuitively, we expect that
E(Y|X =) = (1 +x)/2. Let’s show this. First, fy|x(y|z) = 1/(1 — ) for
r <y <1land fyx(y|z) = 0 otherwise. Hence,
142z

2

1 1 1
BYIX =)= [ yfvix(sla)dy = 1— [ ydy =

as expected. Thus we can write E(Y|X) = (1 + X)/2.

THEOREM. 3.8.2. (The rule of iterated expectations.) For random vari-
ables X and Y, assuming the expectations exist, we have that

E[E(Y|X)] = E(Y) and E[E(X|Y)] = E(X).
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More generally, for a function r(z,y) we have
E[Er(X,Y)X)|=E(r(X,Y)) and E[E(r(X,Y)X)=Er(X,Y))

where E [E(r(X,Y)|X)] is the random variable taking value E [E(r(X,Y)|X = z)] =
[r(x,y)fyvx(y|r)dy when X = z.

PROOF. E[E(Y|X)] = [ E(Y|X = z)fx(x)dz = [ [yf(y|x)dyf(z)dx =
JIyfyle)f(z)dedy = [ [y f(z,y)dedy = E(Y).

What does this theorem mean? Remember that E(Y|X = z) = py(x)
is a function of x. We can therefore compute its expectation by integrating
[y (z) fx(x)dz. When we do this, we get back E(Y).

EXAMPLE. 3.8.3. Consider the previous example. How can we compute
E(Y). One method is to find the joint density f(z,y) and then compute
E(Y)= [ [yf(z,y)dzdy. An easier way is to do this in two steps. First, we
already figured out that E(Y|X) = (1+ X)/2. Thus, E(Y) = FE(Y|X) =
E(1+X)/2)=(1+E(X))/2=(1+(1/2))/2 =3/4.

The conditional variance is defined as Var(Y|X = z) = [(y—uy (2))?f(y|z)dy.

THEOREM 3.8.4. For random variables X and Y,

Var(Y) = EVar(Y|X)+ VarE(Y|X).

EXAMPLE. 3.8.5. (A two stage model). Draw a county at random from
the United States. Then draw n people at random from the county. Let
X be the number of those people who have a certain disease. If P denotes
the proportion of of people in that county with the disease then P is also a
random variable since it varies from county to county. Given P = p, we have
that X ~ Bin(n,p). Thus, E(X|P = p) = np and Var(X|P = p) = np(l —
p). Suppose that the random variable P has a uniform (0,1) distribution.
Then, E(X) = FE(X|P) = E(nP) = nE(P) = n/2. Let us compute the
variance of X. Now, Var(X) = EVar(X|P) + VarE(X|P). Let’s compute
these two terms. First, EVar(X|P) = E[nP(1 — P)] = nE(P(1 — P)) =
n [ p(1—p)f(p)dp = n fy p(1—p)dp = n/6. Next, VarE(X|P) = Var(nP) =
n*Var(P) =n? [(p—(1/2))*dp = n?/12. Hence, Var(X) = (n/6) + (n?/12).
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3.9. Special Distributions Revisited

We now compute the moments of some special distributions. Remember
that it is important to distinguish the random variable from parameters
(constants). For this reasons, we shall write these probability functions in
the form f(z;6) where 6 represents parameters. For convenience, I will define
the special distributions again.

Bernoulli. Suppose that X takes values 0 and 1 only. We say X has
a Bernoulli distribution. Let p = P(X = 1) and ¢ =1 —p = P(X = 0).
Write X ~ Ber(p). This is just a coin flip. Here p is usually an unknown
parameter. We have seen that E(X) = p and Var(X) = pg. We can write
the probability function as f(z;p) = p®¢' % for z = 0, 1.

Binomial. We already know this one. Flip a coin n times and let X be
the number of heads. Then X ~ Bin(n,p) and

f(zsn,p) = <n>pxq”_”” forz =0,...n.
X

Usually, n is a known parameter and p is an unknown parameter. Recall
that E(X) = np and Var(X) = npq.

Poisson. A random variable X has a Poisson distribution, denoted by
X ~ Pois(A), if

e—)\ T

flz;A) = 0 x=0,1,2,...

Here, A > 0 is a parameter. Often, counts have a Poisson distribution. For
example, the number of atoms that experience radioactive decay in a lump
of uranium, follows a Poisson distribution. If you count the number of errors
in computer code, it will have (approximately) a Poisson distribution.
Let us show that f(z;A) sums to one. We will need the following fact.
FACT: (Series expansion for exponential). If a is a real number then

o] a® CL2
=) —=1+a+ —
Lottt
Now,
o o0 T
S flzsA) =e? —|:e_)‘)‘:1
=0 =0 Z



Let us compute the mean:

00 o) e—)\/\z
BY) = YaflmN =Y

[e'e} e—)\/\z o0 e—)\/\x—l

- ;x x! —/\;x x!
o) 67’\)\9571 00 e—)\)\y

= A y=x—1
w;(fc—l)' yzo y!

= A fly;A) = A
y=0

To compute the variance we do a trick. By a similar calculation as the
one above, one can compute that F[X (X —1)] = A%, But E[X(X — 1)] =
E(X? - X) = E(X?) - E(X) = E(X?) = X. So, \? = E(X?) — \. Thus,
E(X?) =X+ . Finally, Var(X) = E(X?)— 2 = A4+ X — \? = \. Suppose
that X1, ..., X, are independent and that X; ~ Pois()\;). Let Y =3, X;. In
the appendix we prove that Y ~ Pois(}>; ;).

EXAMPLE 3.9.1. Let X be the number of errors per page of computer
code. Suppose that X ~ Pois(3). What is the probability that the number
of errors on two pages is 10 or more? We want P(Y > 10) where ¥V =

X + Xy ~ Pois(6). So

oo —6650 9 —6650
P(Yzlo):zex, :1—Zex, — .0838.
=10 . z=0 .

The last sum can be done numerically or can be obtained from the Table on
page 688 of DeGroot.

The Normal (Gaussian). A random variable X has a Normal (or
Gaussian) distribution, denoted by X ~ N(u,0?), if it has pdf

1(z —p)?

fl@p,0) = ﬁexp {—gT}

where z is any real number, p is real and o > 0. Clearly, f(z;p,0) > 0 and
it can be shown using some calculus tricks that [ f(z; u,o0)dz = 1.
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Let X ~ N(u,0) and let Z = (X — p)/o. Then, in the appendix we
prove that Z ~ N(0,1). A Normal random variable with 4 =0 and 0 = 1
is called a standard normal random variable. The distribution function for
a standard normal is tabulated on page 689 of DeGroot. It is also available
in many compute programs. From this table we can compute the following:
P(|Z] <1)=.68, P(|Z| <2)=.95 P(]Z| < 3) =.99.

The standard normal density is often written as ¢(z) and the cdf is written
as ®(z) instead of F(z). Note that ¢ is symmetric about 0. It follows that
®(—2) =1 — ®(z) which you can see by drawing a picture.

EXAMPLE 3.9.2. Suppose that X ~ N(u,0?) with g = 5 and o = 2.
Find P(1 < X < 8). To solve this, let Z = (X — p)/o = (X —5)/2 and
recall that Z ~ N(0,1). Then,

PA<X<8) = p(1;5<X2—5<8;5)
= P(-2<Z<15b)
= P(Z<15)— P(Z < -2)
= ®(1.5) - 0(-2)
B(1.5) — [1 — B(2)]

9332 — [1 — .9771] = .9105.

We wrote ®(—2) as 1 — ®(2) since the table in DeGroot only has the cdf for
positive values.

Suppose that Xi,...,X, are independent and X ~ N(p;,0?). Let
Y = b+ Y, aX,. Then Y ~ NOb+ %, azuz,z 262). In particular

] ’L Z

let (Xi,...,X,) be iid N(u,0?) and let X,, = n 'Y, X;. Then, X,
N(p,0%/n).

EXAMPLE. 3.9.3. Suppose that X; ~ N(u,0?), 7= 1,...,n are iid and
that o = 3. How large should n be so that P(|X, — u| < 1) > .95? We saw
that X,, ~ N(p,0?/n) = N(u,9/n). Hence,

X, —
z=22"E L N,1).

ND
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So,

P(X,-pl<1) = P(Y"s_”s%)

and we want this to be at least .95. From the Normal table in DeGroot we
see that P(]Z| < 1.96) = .95 (do you see why?) So we set /n/3 = 1.96 to
conclude that n = 34.6 =~ 35.

The Gamma Function. For any o > 0 define

The function I'(«) is called the Gamma function. You can’t do this integral
in closed form but it can be evaluated numerically. Anyway, lots of properties
about I'(a) are known. Here we state some handy properties:
(1) M) = (@« — 1)l — 1).
(2) T'(1) =1.

(3) If n is an integer, then I'(n) = (n — 1)!. Thus, the Gamma function
is a generalization of the factorial function.

(4) If n is an integer, then

()= (- DD )

(5) T'(1/2) = /7.
All these facts are easy to prove by doing some integration though we
shall not pursue the details.

The Gamma Distribution. A random variable X has a Gamma dis-
tribution with parameters o and 3, denoted by X ~ Gamma(c, 8), if X > 0

and
(8

flz; o, 8) = ﬁ—x”‘_le”g‘” for z > 0.

IN()
To see that this is a pdf,
/00 flz; o, B)dr = b /oo e Py
0 I'(«) Jo
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Now let’s get the mean:
EX) = / f(z; o, B)dx
0
= b /:m:"‘_le_ﬂxdx
0

I'(a)

_ /Ba o a, —pzx

= o) /0 % P*dx

_ a ﬂa—i—l (oe—}—l)—le—/a’acdx
IN{ a) ﬂa“ Fa+1)

_ al'(a) .

= B /0 flz;a+1,8)dx

- ¢

= 35

By a similar calculation we conclude that
ala+1)---(a+k—1)
B* '
Thus, Var(X) = E(X?) — u? = a/B% Now let Xi,..., X, be independent

with X; ~ Gamma(a;, 8). Let Y = Y; X;. Then, in the appendix we prove

E(X*) =

The Exponential Distribution. We say that X has an exponential
distribution, written X ~ ezp(3) if

f(@:8) = Be™ z>0.

Note that this is just a special case of the Gamma distribution with o = 1.
Hence, we can immediately conclude that F(X) = 1/8, Var(X) = 1/3?
and ¢¥(t) = /(B —t) for t < B. Hence, if X3,..., X, are iid exp(f) then

Exponential and Gamma distributions are sometimes used as models for
lifetimes. The exponential distribution has an intriguing property called the

15



“memoryless property.” Define the “survivor function” by S(¢) = P(X >
t) = 1—F(t). Suppose X ~ exp(). Then S(t) = P(X > t) = [ Be P*dx =
e Pt Let t and h be positive numbers. Then,

P(X >t+h, X > t)
P(X >t)
P(X >t+h)
P(X > 1)
S(t+h)
S(t)
= e Ph=8(h)=P(X > h).

P(X >t+h|X > 1)

Thus, for an exponential distribution, the distribution of remaining lifetime
does not depend on how long one has been alive. This is false for humans
but approximately true for some electronic components.

The Beta Distribution. We say that X has a Beta distribution, writ-
ten, X ~ Beta(a, f), if

fla;0,8) =4 t&thze" (1—2)f~" 0<z<1
0 otherwise.

The parameters are both required to be positive. It can be show that
fol f(z;a, B)dz =1 so this is a pdf. We can compute the mean as follows:

EX) = /lef(ac;oz, )dx

Cla+p5) _
= NORE) /0 (1 — z)? ldx
— F(Oj + 6) F(a + 1)F(6) /1 F(a + 0+ 1) x(oﬂ—l)fl(l _ I)ﬁildx
Fa)T'(B) T(a+p+1) Jo T(a+ 1)I(B)
Fla+p) D(a+ 1I(B) T _
— T @t g 1) b (a0
_ Dla+p) I'(e+1)I(B)
F(@)(B) T(a+p+1)
_ T+f) al(@r()
I(@)l(B) (a+ B)(a+ pB)

16



Q
a+pf

By similar reasoning one gets

af
(a+ B a+pB+1)

Var(X) =

The Multinomial Distribution. Suppose there are k possible out-
comes in an experiment. For example, suppose we draw a ball from an urn
and the ball can be one of four colors. Then k£ = 4. Suppose we take n inde-
pendent draws and let X = (Xi,..., X)) where X; is the number of draws
that were color 1, where X, is the number of draws that were color 2, etc.
In this case our random variable is actually a random vector. If £k = 2 this
reduces to a binomial situation (heads or tails). Let p = (p1,...,px) where
p; > 0 and >, p; = 1. Here, p; is the probability of getting a ball of color .
It can be shown that the probability mass function for X is

n!

. — — S —— S WK 4]
f(xanvp) —P(X—.’E) - xl!"'xk!pl Py -

Note that the marginal distribution of any one component of the vector is
binomial, that is X; ~ Bin(n,p;). Thus, E(X;) = np; and Var(X;) =
npi(1 — p;). It is also interesting to compute Cov(X;, X;). To do so, we
use a trick. Note that X; + X; ~ Bin(n,p; + p;). Thus, Var(X; + X;) =
n(p;+p;)(1—[pi+p,]). On the other hand, using the formula for the variance
of a sum, we have that Var(X;+X;) = Var(X;)+Var(X;)+2Cov(X;, X;) =
npi(1 — p;) + np;(1 — pj) + 2Cov(X;, X;). If you equate this formula with
n(p; + p;)(pi + p;) and solve, one gets Cov(X;, X;) = —np;p;.

APPENDIX 3. Moment Generating Functions

The moment generating function (mgf), or Laplace transform, of X is
defined by 9x(t) = Ee!* where t varies over the real numbers. In what
follows, we assume that the mgf is well defined for all ¢ in small neighborhood
of 0. It need not be defined for all ¢ to be useful. When the mgf is well defined
in this sense, it can be shown that we change interchange the operations of
differentiation and “taking expectation.” This leads to

Y'(0) = [%Ee”‘]
t=0

17



- ol
dt -0

= E[Xe*] = EB(X).

By taking for derivatives we conclude that 1*)(0) = E(X*). This gives us a
method for computing the moments of a distribution.

EXAMPLE. Let X have pdf

T x>0
otherwise.

e
For any ¢ < 1 we have

Yx(t) = EetX:/ ee *dx
0

1=t

The integral is divergent if ¢ > 1. So, ¥x(t) = 1/(1 —t) for all ¢ < 1. Now,
¢'(0) = 1 and 9" (0) = 2. Hence, E(X) =1 and Var(X) = E(X?) — u? =
2—1=1.

Properties of the mgf.

(1) If Y = aX + b then 9y () = e"x(at).

(2) If Xy,...,X, are independent and Y = 3, X; then 9y () = [I, ¥;(t)
where 1); is the mgf of Xj.

EXAMPLE. Let X ~ Bin(n,p). As before we know that X = Y, X;
where P(X; = 1) = pand P(X; = 0) = 1 — p. Now ¢;(t) = EeXi' = (p x
e')+((1—p)) = pe’ +q where ¢ = 1 —p. Thus, ¢x(t) = [1;9:i(t) = (pe’ +q)".

Here is the reason why mgf’s are important.

THEOREM. Let X and Y be random variables. If ¢x (t) = 1y (¢) for all
t in an open interval around 0, then X Ly.

This means that when the mgf exists, it completely characterizes the
distribution.

18



EXAMPLE. Let X ~ Bin(n;,p) and X ~ Bin(ny,p) be independent.
Let Y = X; + X5. Now

Py (t) = 1 (t)iha(t) = (pe' + ¢)™ (pe’ + ¢)™ = (pe’ + ¢)™ "

and we recognize the latter as the mgf of a Bin(n;+ns, p) distribution. Since,
by the last theorem, the mgf characterizes the distribution (i.e. there can’t
be another random variable which just happens to have the same mgf) we
conclude that Y ~ Bin(n; + na, p).

Let us also compute the mgf of some distributions. For the Poisson:

Y(t) = EeXt

[e's} Az
€ A

— t t_
= e )\e/\e :e)\(e 1).

Suppose now that X7,..., X, are independent and that X; ~ Pois();). Let
Y =37, X;. Then,

Yy (t) =TJws®) =]] i€ =1) — 2o Nilef 1)

The latter expression is the mgf for a Poisson with parameter >, ;. We have
thus proved that Y°; X; ~ Pois(3; ).
Let’s compute the mgf of a Normal:

ot? 1 1(x — f1)?
= exp{ut+ D) }/0— QWGXP{_iT dx

where i = u+to?. To see that the last line equals the line before it, substitute
in ji = p+ to? and combine all the terms. It is tedious but straightforward.
Now, the term in the integral is a Normal density and hence it integrates to
1. Thus,

»(t) = exp {ut—i— ?}
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Now E(X) = ¢'(0) = u, Var(X) = E(X?) — p? = ¢"(0) — u? = o%. So the
mean and variance are just ¢ and o2. Let Y = aX + b where a # 0. Then,

Yy (t) = ePapx(at) = exp {(a,u +b)t + %aQOQtQ} .

Therefore, Y ~ N(ap + b, a*c?).
For a Gamma, the mgf can be obtained by integration and we get

o) = (%)

for t < B. Now let X3,..., X, be independent with X; ~ Gamma(a, B).
Let Y =3, X;. Then,

vr(t) =TTi(0) = (%)Eiai |

Hence, Y ~ T'(3; i, B).
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