CHAPTER 4. Inequalities

4.1. Markov and Chebychev Inequalities

Inequalities are useful in probability for bounding quantities that might
otherwise be hard to compute. They are also useful for developing the theory
of convergence which is discussed in the next chapter. Our first inequality is
Markov’s inequality.

THEOREM. 4.1.1. (Markov’s Inequality). Let X be a non-negative ran-
dom variable (i.e. P(X > 0) = 1). Suppose that F(X) exists. For any

t>0,
E(X
P(X>t)§¥.

PROOF. We have that E(X) = [° 2 f(z)dz = [} v f (v)dz+[° v f (z)dz >
af(x)dr >t [ f(z)de = tP(X > t).

THEOREM. 4.1.2. (Chebyshev’s inequality.) Let p = E(X) and o? =
Var(X). Then,

0.2

P(X —pl2t) < 5
and N
P(1Z] 2 k) < 5

where Z = (X — p)/o. In particular, P(|Z| > 2) < 1/4 and P(|Z| > 3) <
1/9.
PROOF. We use Markov’s inequality to conclude that
E(X —p)? o?
P(X —pl 21) = P(X —pf > ") < ————— = .

The second part follows by setting ¢t = ko.

THEOREM. 4.1.3. Let X1,...,X, be n independent random variables
with common finite mean p and common finite variance 0. Let

7 = (Xn_,u) \/E(Xn_,u‘)

v/ Var(X,) o




where

Then, fort >0,
1

P(|Za] > 1) < .

PROOF. This follows from the fact that Var(X,) = o?/n and Cheby-
shev’s inequality.

EXAMPLE 4.1.4. Suppose we test a prediction method (a neural net for
example) on a set n = 10,000 new test cases. Let X; = 1 if the predictor
is wrong and X; = 0 if the predictor is right. Then X, = n 'Y, X;
is the observed error rate. Each X; may be regarded as a Bernoulli with
unknown mean p. We would like to know the true, but unknown error rate
p. Intuitively, we expect that X,, should be close to p. Now, u = EX; = p
and ¢ = y/Var(X;) = {/p(1 —p). Let us bound P(|X — p| > .01). Using
Theorem 1.3:

P(X —p|/>.01) = p(\/myan—ul . .01\/ﬁ>

o

p(1—p)

(1-p)

IA

VAN
NS

since p(1 — p) < i for all p.
4.2. Cauchy-Schwarz and Jensen

The next result is the Cauchy-Schwarz inequality. We have already seen
this but we repeat it here for completeness.

THEOREM 4.2.1. (Cauchy-Schwarz inequality.) If X and Y have finite

variances then 12
EXY|<{E(X)EY*}".
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Recall that a function g is convez if for each z,y and each « € [0, 1],

glaz + (1 — a)y) < ag(z) + (1 — a)g(y).

If g is twice differentiable, then convexity reduces to checking that ¢"(z) > 0
for all z. It can be shown that if g is convex then it lies above any line that
touches ¢ at some point. A function ¢ is concave if —¢ is convex. Examples

of convex functions are g(r) = z? and g(z) = e*. Examples of concave

functions are g(z) = —z? and g(z) = log .
THEOREM 4.2.2. (Jensen’s Inequality.) If g is convex then
Eg(X) > g(EX).

If g is concave then
Eg(X) < g(EX).

PROOF. Let L(xz) = a+ bz be a line, tangent to g(x) at the point E(X).
Since g is convex, it lies above the line L(z). So,

Eg(X) > EL(X)
E(a+bX)
= a+bE(X)
L(E(X))

9(EX).

From Jensen’s inequality we see that EX? > (EX)? and E(1/X) >
1/E(X). Since log is concave, E(log X) < log E(X). For example, suppose
that X ~ N(3,1). Then E(1/X) > 1/3.

4.3. Hoeffding’s Inequality

Recall Markov’s inequality. If X > 0 and ¢ > 0 then P(X > t) < E(X)/t.
Hoeffding’s Inequality is in the same spirit but it is a sharper inequality. We
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present the result here in two parts. The proofs are in the appendix of this
Chapter.

THEOREM 4.3.1. Let Yi,...,Y, be independent observations such that
E(Y;))=0and a; <Y; <b;. Let € > 0. Then, for anyt > 0,

P <i }/; 2 6) S e—tE rn[ etz(bi—ai)z/S.

i=1 =1

THEOREM 4.3.2. Let X, ..., X, ~ Bernoulli(p). Then, for any e > 0,
P <\7n —p| > e) < 2¢2n¢

where X, =n"' Y, X;.

EXAMPLE 4.3.3. (EXAMPLE 4.1.4 revisited.) Recall that n = 10,000
and X; ~ Ber(p). Using Chebyshev’s inequality we found that

— 1
P(|X —p|>.01) < T
According to Hoeffding’s inequality,
P(IX —p| > .01) < 27200 — 97

which is roughly the same. In this case, there was not much difference.
Often, Hoeffding’s inequality gives tighter bounds. You will prove this in the
homework.

As an aside, let us note that Hoeffding’s inequality gives us a simple way
to create a confidence interval for a binomial parameter p. We will discuss
confidence intervals later but let is give the basic idea here. Fix a > 0 and

let
1 2 1/2
€, = {—log (—)} ;
2n o

Hoeffding’s inequality says that
P (|7n —p| > en) < 2e 4 = .

Let C = [X,, — ¢, X, + ¢|. Then, P(C ¢ p) = P(|X,, — p| > ¢) < a. Hence,
P(p € C) > 1 — « that is, the random interval C traps the true parameter
value p with probability 1 — «; we call C a 1 — « confidence interval. More
on this later.



Appendix: Proof of Hoeffding’s Inequality

We will make use of the exact form of Taylor’s theorem: if g is a smooth
function, then there is a number £ € (0,u) such that g(u) = g(0) + ug'(0) +

2 1

59 (&)

PROOF of Theorem 4.3.1. For any ¢ > 0, we have, from Markov’s in-
equality, that

P(iYi ze> = P<tiYi zte)
=1 =1

P (et Z?:l Yi > ete)
e teE (et Zinzl Yl)

= e T[B(e™). (1)

IN

Since a; < Y; < b;, we can write Y; as a convex combination of a; and b;,
namely, Y; = ab;+(1—«)a; where o = (Y;—a;)/(b;—a;). So, by the convexity
of " we have
eV < Yi—ai ethi 4 b'_Y;etai-
b, — a; b; —a;
Take expectations of both sides and use the fact that E(Y;) =0 to get
S b et = 9 (2)

EetYi <
i — Q4 b; — a;

where u = t(b; — a;), g(u) = —yu + log(l — v +ve*) and vy = —a;/(b; — a;)-
Note that g(0) = ¢'(0) = 0. Also, ¢" (u) < 1/4 for all u > 0. By Taylor’s
theorem, there is a £ € (0,u) such that

2

"

g(w) = g(0) +ug (0) + =4 (&)

2
2
u=
= 39(5)
< U_QZM
- 8 8

Hence,
EetYi < eg(u) < etQ(bi—ai)2/8.



The result follows from (1).

PROOF of Theorem 4.3.2. Let Y; = (1/n)(X; — p). Then E(Y;) =0 and
a <Y; <bwhere a = —p/nand b = (1 — p)/n. Also, (b —a)? = 1/n?.
Applying the last Theorem we get

P(Xn—p>¢) = PRYi>¢

< e—teetz/(Sn)

The above holds for any ¢ > 0. In particular, take ¢ = 4ne and we get
P(X,—-p>¢< e~2ne”
By a similar argument we can show that
P(X,—p< —e) <e 2,
Putting these together we get

P (|Yn —p|> e) < 2e72¢



