6 Introduction to Statistical Inference

6.1 Introduction

Statistical inference, or “learning” as it is sometimes called in Computer
Science, is the process of using data to infer the distribution that gener-
ated the data. The basic statistical inference problem is this: we observe
Xi,...,Xp, ~ F and we want to guess (or infer or estimate) F' or some
feature of F', such as the mean.

Sometimes we will make very assumptions about F. For example, we
might assume only that F' € F where F is the set of all distribution func-
tions. Inferential methods that use few assumptions about F', are called
nonparametric methods. The set F is an example of a nonparametric model.

Sometimes we will make stronger assumptions about F', such as F' has
a density f € F where F is the set of all Normal density functions. In
this case we can write F = {f(z;0) : 6 € O} where 6 is the unknown
parameter and © is the parameter space. We will write a typical density
in a parametric model as f(x; #). In the Normal example, § = (u, o) and
O = {(u,0) : p € R,0 > 0}. We call F a parametric model since it
is indexed by a finite-dimensional parameter §. Inferential methods that
are based on the assumption that F' is in a parametric model are called
parametric methods. Here are some examples to make these ideas clear.

EXAMPLE 6.1 (One-dimensional Parametric Estimation.) Let X1, ...
be independent Bernoulli(p) observations. The problem is to estimate the pa-
rameter p.

EXAMPLE 6.2 (Two-dimensional Parametric Estimation.) Suppose
that X1, ..., X, ~ F and suppose we assume that the pdf f € F where

1
F = : flx) = e {
{f fl@) =~ N
We call F a two-dimensional parametric model. In this case there are two
parameters, . and o. The goal is to estimate the parameters from the data.
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(a:—,u)Q}, peER, a>0}.

EXAMPLE 6.3 (Nonparametric estimation of the cdf.) Let X;,..., X,
be independent observations from a cdf F'. The problem is to estimate F' with-
out making any assumptions about F.
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EXAMPLE 6.4 (Nonparametric density estimation.) Let X;,..., X,
be independent observations from a cdf F and let f = F' be the pdf. Suppose
we want to estimate the pdf f while making weak assumptions about f. For
example, if we have reason to believe that f is smooth, we might assume that

f € F where

f:{g: g>0, /g(:v)dle, /(g”(aj))Qda}<oo}.

The class F 1is the set of pdf’s that are not “too wiggly.”

EXAMPLE 6.5 (Nonparametric estimation of functionals.) Let X, ...

F. Suppose we want to estimate p = E(X,) = [xdF(z) assuming only
that i exists. The mean i may be thought of as a function of F'; we can
write p = T(F) where T(F) = [xdF(x). In general any function of F is
called o statistical functional. Other examples of functions are the variance
T(F) = [22dF (z) — (J 2dF(z))* and the median T(F) = F~1/2.

EXAMPLE 6.6 (Regression, prediction and classification.) Suppose
we observe pairs of data (X1,Y1),...(Xn,Ys). Perhaps X; is the blood pres-
sure of subject i and Y; is how long they live. Define f(z) = E(Y|X = x).
We call f(z) the regression function. Let e =Y — f(X). Note that E(e) =
EE(e|lX) = E(E(Y - f(X))|X) = E(E(Y|X) - f(X)) = E(f(X) - f(X)) =
0. We can write the data as

Y = f(Xi) + e

The problem is to estimate the function f. If we assume that f has a linear
form such as f(x) = Py + Bix then this is a parametric problem and is
called linear regression. We might instead make only a weak smoothness
assumptions on f. In that case we refer to the problem as nonparametric
regression. If we don’t want to estimate f but instead we only want to predict
Y given a new value of X, we call this prediction. When Y is discrete, the
prediction problem is usually called classification.

WHAT’S NEXT? It is traditional in most introductory courses to start
with parametric inference. I am going to take a radical approach and do
the opposite. We will start with nonparametric inference and then we will
cover parametric inference. I think that nonparametric inference is easier to
understand. It is also, in my opinion, more useful than parametric inference.
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FREQUENTISTS AND BAYESIANS. There are many approaches to statis-
tical inference. The two dominant approaches are called frequentist inference
and Bayesian inference. We’'ll cover both but we will start with frequentist
inference. We’ll postpone a discussion of the pro’s and con’s of these two
approaches until we’ve learned a bit of both.

6.2 Point Estimates, Confidence Intervals and Hypoth-
esis Tests

The particular goals of inference are problem dependent, but many inferential
problems can be identified as being of one of three types: point estimation,
confidence intervals or hypothesis testing.

PoinT ESTIMATION. Consider the simple problem of coin flipping. Sup-
pose Xi,..., X, ~ Bernoulli(p). If we want a “best guess” of p, then we
might use p = n~' Y, X;. The quantity p is called a point estimate.

A point estimator 8, of a parameter 6 is unbiased if E(f,) = 0. Unbi-
asedness used to receive much attention. These days it is not considered very
important and many of the estimators We use are biased. A point estimator
0 of a parameter 0 is consistent if 0 2 6. Consistency is important and all
the estimators we will use will be consistent estimators.

If § is a parameter and §n is a point estimate of 6, then the standard
deviation of 8, is called the standard error, denoted by se:

se(6,) = \/Var(8,).

Often, it is not possible to compute the standard error but usually we can
estimate the standard error. The estimated standard error is denoted by
se. As an example, consider the estimate p = n=! Y, X; for the Bernoulli

parameter p. Its true standard error is se = /Var(p,) = 1/p(1 — p)/n. Since

we do not know p, we can’t compute se. But we can estimate the standard
error with se = 1/p(1 — p)/n.

The quality of a point estimate is sometimes assessed by the mean squared
error, or MSE, defined by

= / (é\n(xla e ,-/I/"IL) - 0)2 f({L‘l’ NN o)dl‘l .. .dxn
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where Ey(-) refers to expectation with respect to the distribution f(z1,...,z,; )
that generated the data. It does not mean we are averaging over a density
for 6.

Let 6, = Ey(6,). Then

Ep(0n — 0)> = Ey(n — 0p + 0, — 0)°
= Ey(0, — 0,)> +2(0, — 0)2Ey(8,, — 0,) + Ey(8,, — 0)?
(0 — 0)* + Ep(0r — 0,,)°
= bias® + Variance
= bias® + se’

~

where bias = Fy(6,) — 6. We see that if bias — 0 and se — 0 then MSE — 0
and hence 6,, 3 0. Since convergence in quadratic mean implies convergence
in probability, we conclude that if bias — 0 and se — 0 then b, > 0.
Returning to the coin flipping example, we have that E,(p,) = p so that
bias = p —p = 0 and se = /p(1 — p)/n — 0. Hence, p, — p, that is, p, is a

consistent estimator.

CONFIDENCE INTERVALS. A confidence interval for a parameter 6 is an
interval C,, = (a,b) where ¢ = a(Xi,...,X,) and b = b(Xy,...,X,) are
functions of the data such that (a,b) traps the 6 with some pre-specified
probability. Note that C, is random and 0 is fixed. In the coin flipping
setting, let C, = (Pn — €, Dn + €n) Where €2 = log(2/a)/(2n). Earlier, we
showed, using Hoeffding’s inequality, that P(p € C,,) > 1 — «, so C, is a
1 — « confidence interval. ~

In some cases, point estimators have a limiting Normal distribution, 6, ~
N(f,se?). In this case we can construct (approximate) confidence intervals
as follows. Let 2,2 = ® '(1 — («/2)). Hence, P(Z > z,2) = /2 and
P(=24/2 < Z < Zaj2) =1 — o where Z ~ N(0,1). Let

~

Cn = (0n — 2a/25€, 0, + Za /2 S€).
Then,
pPecC,) = P @n — Zgj2se < 0 < gn + Za/2 se)

6, — 0
= P|—240<—> < 24
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~ P (—Za/g <Z< Za/g)

= 1-o.

The same is true if an estimate se is inserted for se. In summary,

~

0, & zq/2 5€ is an approximate 1 — « confidence interval.

Often, people use 95 per cent confidence intervals which corresponds to
a = 0.05. In this case, z,/2 = 1.96 ~ 2 leading to the approximate 95 per
cent confidence interval 6,, + 23e.

HypPoTHESIS TESTING. Suppose we want to know if a coin is fair (p =
1/2). Let H, denote the hypothesis that the coin is fair and let H; denote
the hypothesis that the coin is not fair. Hj is called the null hypothesis
and H; is called the alternative hypothesis. We can write the hypotheses
as Hy : p =1/2 versus Hy : p # 1/2. If we toss a coin 100 times and get
100 heads, we might reasonably take this as evidence against H,. This is an
example of hypothesis testing.
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