7 Estimating the Distribution Function and
Statistical Functionals

The first inference problem we will consider is nonparametric estimation of
the cdf F. Actually, we are rarely interested in estimating F' but estimating
the cdf is a useful first step towards estimating other quantities.

7.1 The Distribution Function

Let Xy,..., X, ~ F where F is a distribution function on the real line. The
empirical distribution function Fy, is the cdf that puts mass 1 /n at each data
point X;. Formally, we define F,, as follows. Let

ixsa =g py e
Then
ﬁn(x) _ i H{X; <z} _ number of observations less than or equal to z
n n
We can also write F,(z) = n~' ¥, dx,(x) where dx,(z) is a point mass at
X;.

We propose to use ﬁn as an estimate of F'.

EXAMPLE 7.1 The first plot in Figure 7.1.1 shows the true cdf for a
N(0,1). I generated 100 observations from a N(0,1). The empirical cdf is
shown in the second plot. The third plot overlays the two cdf’s. The R code
to generate these plots is as follows.

par (mfrow=c(2,2))

grid <- seq(-3,3,length=1000)

cdf <- pnorm(grid)

plot(grid,cdf,type="1",xlab="x",ylab="cdf",sub="True cdf")

n <- 100

x <- rnorm(n)

x <- sort(x)

cdf.hat <- (1:n)/n

plot (x,cdf.hat,type="s",xlab="x",ylab="cdf",sub="Empirical cdf",x1lim=c(-3,3))
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### type = "s" means, draw a step-function
plot(grid,cdf,type="1",x1lab="x",ylab="cdf")
lines(x,cdf.hat,1ty=3,c0l=3,1wd=3,type="s")

The following two theorems give some properties of F, (x).

THEOREM 7.1 At any fized value of x,

~

E (Fn(x)) =F(z) and Var (ﬁ’n(x)) = F@)( = F(az))

n

Thus,
Fz)(1 - F(x))

n

MSE = — 0

so Fp(x) 5 F(z) and F,(z) & F(z).

PROOF. Homework.

We now know that F,(z) % F(z) at each 2. But that doesn’t imply that
sup,, | F,(z) — F(z)] % 0. The following theorem shows that this stronger
convergence does indeed hold.

THEOREM 7.2 (Glivenko-Cantelli Theorem) 7 Let X;,..., X, ~ F.
Then R
sup |Fy,(z) — F(z)| 2 0.

Remark. If you are unfamiliar with sup, just think of it as maux.
The next theorem tells us how close F,, is to F(z).

THEOREM 7.3 (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality.)
Let X1,...,X, be td from F. Then, for any ¢ > 0,

2

P(sup|F(z) - Ey(z)] > €) < 2e 2. (3)

7 Actually, we have a stronger convergence called almost sure convergence.
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Figure 7.1.1. cdf of N(0,1) and empirical cdf from 100 observations.
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From the DKW inequality, we can construct a confidence set. Let € =
log(2/a)/(2n), L(z) = max{F,(z) — €,, 0} and U(z) = min{F,(z) + ¢,, 1}.
It follows from (3) that, no matter what the true F' is,

PFeC)>1-a

where F is the set of all distribution Thus, C), is a nonparametric 1 — a con-
fidence set for F'. A better name for C, is a confidence band. To summarize:
a 1 — a nonparametric confidence interval for F' is (L(z), U(z)) where

L(z) = max{f’n(a:) — €, 0}
U(zx) = min{F,(z)+ €, 1}

q s ()
n = —log [ — ).
¢ Qnga

EXAMPLE 7.2 Figure 7.1.2 shows the true cdf, the empirical cdf, and the
95 per cent confidence band using 100 observations from a N(0,1). The extra
R code to compute the confidence band is:

alpha <- .05

eps <- sqrt(log(2/alpha)/(2*n))
1 <- pmax(cdf.hat - eps, 0)
u <- pmin(cdf.hat + eps, 1)

### type help(pmin) or help(pmax) to see what these functions do
plot (grid,cdf,type="1",xlab="x",ylab="cdf")
lines(x,1,1ty=2,col=2,type="s")

lines(x,u,lty=2,col=2,type="s")

7.2 Statistical Functionals

A statistical functional T(F') is any function of F. Examples are the mean

p = [xzdF(zx), the variance 0? = [(z — p)?dF(z) and the median m =

F~1(1/2). We shall also refer to statistical functionals as parameters al-

though that’s an abuse of terminology. Another example of a functional is

[ r(xz)dF(z) where r(z) is a any function of z. The mean is of this form with

r(z) = z. A functional of the form [r(z)dF(x) is called a linear functional.
The plug-in estimator of 6 = T'(F) is defined by

~

0, = T(F,).
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Figure 7.1.2. cdf of N(0,1) and confidence band from 100 observations.
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In other words, just plug in F, for the unknown F.

Before proceeding, let me remind you of about some notation. Let
r(z) be a function of z. The quantity [r(z)dF(z) is to be interpreted
as [r(z)f(z)dr in the continuous case and 5, r(z;)f(z;) in the discrete.
Now, the empirical cdf ﬁ’n(a}) is discrete, putting mass 1/n at each Xj.
Hence, [r(z)dF,(z) = n~'¥,;7(X;). So the plug-in estimator of T'(F) =
[r(2)dF(z) is [ r(z)dF,(z) = n~' ¥, r(X)).

EXAMPLE 7.3 (The mean.) Let p = T(F) = [xdF(x). The plug-in
estimator is i = [xdF,(z) = X,. We can compute the standard error
in this case: se = \/Var(X,) = o/\/n. If G is an estimate of o, then the
estimated standard error is 6//n. (In the next example, we shall see how to
estimate 0.) A Normal-based confidence interval for ji is T £ zq /o se?.

EXAMPLE 7.4 (The Variance) Leto? =T(F) = Var(X) = [ 2%dF (z)—
(f zdF(x))?. The plug-in estimator is
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Some statistics texts use a different estimator, namely,

which s called the sample variance. The reason they prefer this estimator is
that it is unbiased, E(S2) = o?. In practice, there is little difference between
5% and S? and we shall use both. Returning the our last example, we now see
that the estimated standard error of the estimate of the mean is se = 6 //n.

EXAMPLE 7.5 (The Skewness) Let u and o? denote the mean and vari-
ance of a random variable X. The skewness is defined to be

_EX -’ J@—pidF(@)
o’ {/(z — p2dF ()}
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The skewness measure the lack of symmetry of a distribution. To find the
plug-in estimate, first recall that i = n 'Y, X; and 6% = n~ 1 3,(X; — 1)?.
The plug-in estimate of k s
- iR
- 3/2
{J(@ - w2dF,(z)}
Lyi(Xi—n)?

6-3

EXAMPLE 7.6 (Correlation.) Let Z = (X,Y) and let p = T(F) =
E(X — ux)(Y — py)/(0504) denote the correlation between X and Y, where
F(z,vy) is bivariate. We can write T(F) = a(T1(F), To(F), T3(F), T4(F), T5(F))
where

T(F) = [2dF(z) Ty(F)=[ydF(z) Ty(F)=[aydF(2)
T,(F) = J22dP(z) Ty(F) = [y dF(z)

and P
oty 1) = bl
{(ts — 1) (ts — 13)}
If you replace F' with E, inTi(F), ..., Ts(F), and take
ﬁ: a(Tl(Fn),TQ(Fn),Tg(Fn),T4(Fn),T5(Fn)) we get

V(X = X2 /il - V)2
EXAMPLE 7.7 (Quantiles.) Let F' be strictly increasing with density f.
The T(F) = F~'(p) be the p'™ quantile. The estimate if T(F) is F;'(p).

We have to be a bit carefzil since F, is not invertible. To avoid ambiguity we
define F, ' (p) = inf{x : F,(x) > p}. We call F,*(p) the p* sample quantile.

p=

Only in the first example did we compute a standard error or a confi-
dence interval. How shall we handle the other examples. When we discuss
parametric methods, we will develop formulae for standard errors and con-
fidence intervals. But in our nonparametric setting we need something else.
In the next section, we will introduce two methods — the jackknife and the
bootstrap — for getting standard errors and confidence intervals.
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EXAMPLE 7.8 (The Mice Data.) Below are data on the survival times
in days of mice after surgery for a control group and treatment group.

Treatment Group
94 197 16 38 99 141 23

Control Group
52 104 146 10 50 31 40 27 46

Let ux = [zdFx(z) denote the mean survival time of treated mice and let
uy = [ydFy(y) denote the mean survival time of untreated mice. The plug-
in estimates are fix = [xdFx ,(z) = X, = 86.86 and fiy = [ydFy,(y) =
Y, = 56.22. The standard error of X, is sex = se(X,) = /Var(X,) =
ox/v/n = ox/VT which we estimate by 5éx = sx//n where s% is an
estimate of o such as Y ;(X; — X)?*/n or 3;(X; — X)?*/(n — 1). Using
the latter, we get sex = 25.44 and sey = 14.14. The Normal-based 95
per cent confidence intervals are 86.86 £ 2(25.24) = (36.38,137.34) and
56.22 & 2(14.14) = (27.94, 84.50).

However, we are probably more interested in the difference of the means
8 = px — py. The estimate of this is = X —Y = 30.64 which suggests that
the treated mice live, on average, about a month longer. The standard error

ofg is
se(d) = Var(X -Y)

= \/ Var(X) + Var(Y)

1/2

0% o /
= {24 X
ni no

= {s(X) +se2(7)}”.
We estimate the standard error by

se(d) = {s*(X)+5°(V)}

1/2

= {25442+ 14.142}1/2 — 28.03.

Finally, a 95 per cent confidence interval for 0 is 30.64+2(28.93) = (—27.22, 88.50).
This confidence interval is huge. We have much uncertainty about 0. Looking
only at the point estimate is very misleading.
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