8 The Bootstrap

The bootstrap is a nonparametric method for estimating standard errors and
computing confidence intervals. Let T;, be a statistic, that is, a function of
the data (such as the sample mean) and suppose we want to know var(7},).
The bootstrap idea has two parts. First, note that the quantity of interest,
var(7},), is a functional of F" if you knew F' you could (at least in principle)
compute the variance of T,,. To emphasize this fact, we write varp(T},).
Since we don’t know F' we use a plug-in estimator of the variance, namely,
varz (75,). The second step is to notice that vars (7;,) can be approximated

Fy ( F,
by simulation. This is a good time for an aside on simulation.

SIMULATION. Let G be a distribution and let Yi,...,Yp be iid values
drawn from G. By the law of large numbers, B! Zf:l Y; converges in prob-
ability to [ydG(y) = EY. So we can use B! ZleYj as an estimate of
E(Y). In a simulation, we can make B as large as we like in which case, the
difference between B Zle Y; and E(Y') is negligible. Similarly, the sample
variance Y;(Y; —Y)?/B of Y1,...,Yp estimates 0* = Var(Y).

Now back to the bootstrap. We draw B samples of size n from ﬁn, where B

is large. For each sample we compute the statistic giving 7,7 1,75, ..., T, p-
Finally we compute the sample variance varyoo(75,) of T;,l, cen, T;:, p to ap-

proximate varg (T,). The bootstrap standard error of T, is sepoot(Th) =

Varpeot(1n)- Here is a summary of the steps:

(1) Draw B bootstrap samples:
sample 1 = (X7,,...,X],)~ E,
sample 2 = (X3,,...,X5,)~ 28

sample B = (X5,,...,X5,) ~ F,
(2) Compute the statistics
T,, = T(sample 1)
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1,, = T(sample 2)

T, = T(sample B).

(3) Approximate the variance Var(7;,) with the sample variance of T

x
n,ls- - 7Tn,B‘

B 2

— 1 . 1 &
Uboot = Var(T) = E Z < nb E Z Tn,b)
r=1

b=1

(4) The bootstrap estimate of the standard error is $€ = \/Upoot-

We are using two approximations. First, we estimate varp(T,) by varg (T5),
then we approximate varg (T},) by varpeet(77). Since we can make B very
large, we expect that varg (T},) = varpeot(Ty). The main source of error is in
approximating varr(T,,) by varg (15,). To summarize:

not so small small

varp(71),)

How do we simulate from F,,? Since F, gives probability 1/n to each data
point, drawing n points from F, is the same as drawing a sample of size
n with replacement from the original data. This is why bootstrapping
is sometimes called resampling the data. Here is an example in R:

n <- 100

X <- rnorm(n) ### create some data
theta.hat <- median(x) ### suppose T(F) = the median
B <- 1000

theta.boot <- rep(0,B)

for(i in 1:B){
xstar <- sample(x,size=n,replace=T) #i## draw a bootstrap sample
theta.boot[i] <- median(xstar) ### compute the statistic
}

var.boot <- var(theta.boot)

se <- sqrt(var.boot)

print(se)
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The bootstrap can also be used to estimate bias:
1 B
byoot = E Z T;,b — 1.
r=1

We can also estimate the distribution G, (t) = P(T,, < t) of T,,. The boot-
strap estimate of GG, is

~ 1 &

Gt = 52T, <1}

where I{A} = 1 if A is true and 0 otherwise. A histogram of T ,,..., T p

can be regarded as an estimate of the density function of the distribution of
T,.

Under weak conditions on T}, it can be shown that sup, |G (t) — Ga(t)] 2
0 as n — 00, i.e. the bootstrap is consistent. Similarly, it can be shown that
the bootstrap variance estimate is consistent.

8.1 Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. They
vary in ease of calculation and accuracy. I will discuss two of them.

NORMAL INTERvVAL. If T, is approximately normal, then we can con-
struct an approximate confidence interval by:

Tn + Za/2 S€boot

where Sepoot = 1/Varboot (Th)-

EXAMPLE 8.1 (The Mice Data.) Let us return to the mice data. Sup-
pose we are interested in the difference of the medians. We can compute the
estimate and standard error as follows.

x <- c(94, 197, 16, 38, 99, 141, 23)

y <- c(52, 104, 146, 10, 50, 31, 40, 27, 46 )
nx <- length(x)

ny <- length(y)
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mx <- median(x)

my <- median(y)

delta <- mx - my

print(delta)

B <- 1000

delta.boot <- rep(0,1000)

for(i in 1:B){
xstar <- sample(x,size=nx,replace=T)
ystar <- sample(y,size=ny,replace=T)
delta.boot[i] <- median(xstar) - median(ystar)
}

se <- sqrt(var(delta.boot))

The estimate is 48 and the estimated standard error is 42. An approximate
95 per cent interval is 48 £ 2(42) = (—36,132).

PERCENTILE INTERVALS. Let T(*l) be the smallest bootstrap statistic,
let T, be the second smallest bootstrap statistic, etc. Then T{p,, is the
a-percentile of the bootstrap values, that is, the value such that o of the
statistics are smaller than it. Here it is understood that Ba is rounded to
an integer. The percentile interval defined by

(T&;a/g) ) T&B(l—a/Q))) )

The justification for this interval is given in the appendix.

EXAMPLE 8.2 In the mouse data, we can get the percentile confidence
interval as:

quantile(delta.boot,c(.025,.975))
Another way is:

delta.boot <- sort(delta.boot)
i <- round(B*alpha/2)
delta.boot [i]

i <- round(Bx(1-alpha/2))
delta.boot[i]

38



The interval is (-29,101).

The coverage of a bootstrap confidence interval is only approximately
1 — a. There are more elaborate bootstrap confidence intervals that make
this approximation more accurate. We won’t go into details here.

8.2 Case Study 1

Here is an example that was one of the first used to illustrate the bootstrap
by Bradley Efron, the inventor (discoverer?) of the bootstrap. The data are
LSAT scores (for entrance to law school) and GPA.

LSAT 576 635 558 578 666 580 555 661
651 605 653 575 545 572 594

GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43
3.36 3.13 3.12 2.74 2.76 2.88 3.96

Each data point is of the form X; = (Y}, Z;) where Y; = LSAT,; and
Z; = GPA,. The law school is interested in the correlation

[y = i)z - um)dF
[[(y — py)?dF [(z — ,UZ)2dF]1/2

The plug-in estimate is the sample correlation

(Y- Y)(Zi - Z)
[Ei(Yi ~Y)? %% - Z)

9= i

Here is the R code for this problem. It contains a few good R tricks.
theta.fun <- function(y,z){
### this function computes the correlation coefficient
mean.y <- mean(y)

mean.z <- mean(z)
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s.y <- sqrt(var(y))

S.z <- sqrt(var(z))

top <- sum((y-mean.y)*(z-mean.z))

bottom <- sqrt( sum((y-mean.y) 2)*sum((z-mean.z)"2) )
output <- top/bottom

return(output)

}

y <- c(576,635,558,578,666,580,555,661,651,605,653,575,545,572,594)
z <- ¢(3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43,3.36,3.13,
3.12,2.74,2.76,2.88,2.96)

n <- length(y)
theta.hat <- theta.fun(y,z)
print(theta.hat)
B <- 1000
theta.boot <- rep(0,B)
index <- 1:n
for(i in 1:B){
j <- sample(index,replace=T)
ystar <- y[j]
zstar <- z[j]
theta.boot[i] <- theta.fun(ystar,zstar)
}
se <- sqrt(var(theta.boot))
print(se)

postscript("lsat.ps")

### remember to remove the postscript command

### if you are running R interactively

par (mfrow=c(2,1)) ### put several plots per page
### 2 rows and 1 column of plots

plot(y,z,xlab="LSAT",ylab="GPA")

hist(theta.boot,nclass=20,x1lab="Bootstrap Samples")

The estimated correlation is = .776. The bootstrap gives se = .137. 1
used B = 1000. Figure 8.3.1 shows the data and a histogram of the bootstrap
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replications 5*1,A. ce 6*B. This histogram is an approximation to the sampling
distribution of . We can also estimate the bias:

mean(theta.boot)-theta.hat

which yields bias = —0.0005323285. This is tiny compared to Sé so the bias
is not a concern. The Normal-based 95 per cent confidence interval is .78 +
2(se) = (.51,1.00) while the percentile interval is (.46,.96). In large samples,
the two methods will show closer agreement.

8.3 Case Study II

This case study is borrowed from An Introduction to the Bootstrap by B.
Efron and R. Tibshirani. When drug companies introduce new medications,
they are sometimes requires to show bioequivalence. This means that the
new drug is not substantially different than the current treatment. Here
are data on eight subjects who used medical patches to infuse a hormone
into the blood. Each subject received three treatments: placebo, old-patch,
new-patch.

subject  placebo old new old-placebo new-old
1 9243 17649 16449 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 -1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 -638
8 18806 29044 26325 10238 -2719

Let Z = old — placebo and Y = new — old. The Food and Drug Admin-
istration (FDA) requirement for bioequivalence is that || < .20 where

_ Be(Y)

f Ep(Z)

The estimate of 0 is

)
Il

= —.0713.

Y 4523
7 6342
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Figure 8.4.1. Law school data.
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The bootstrap standard error is sé = .105.

This estimator is the ratio of two averages. From experience, statisticians
know that ratio estimators can sometimes be badly biased. The bootstrap
estimate of the bias is §° — § = —.0670 — (—.0713) = .0043. This is small
relative to se so in this case, bias is not a problem.

To answer the bioequivalence question, let’s compute a confidence inter-
val.

## assume the bootstrap values are stored in a vector called theta.boot
alpha <- .05

j <~ round(B*alpha/2)

k <- round(B*(1-(alpha/2)))
theta.boot <- sort(theta.boot)
lower <- theta.boot[j]

upper <- theta.boot [k]

print (lower)

print (upper)

### or do this:
quantile(theta.boot, .025)
quantile(theta.boot, .975)

From B = 1000 bootstrap replications we get the 95 per cent interval is
[-.24,.15]. This is not quite contained in [-.20,.20] so at the 95 per cent level
we have not demonstrated bioequivalence. Figure 8.5.1 shows the histogram
of the bootstrap values.

8.4 Appendix: The Jackknife

The jackknife, due to Quenouille (1949), is a simple method for estimating the
variance of a statistic. It is less computationally expensive than the bootstrap
but is less general. Let T, = T(Xy,...,X,) be a statistic and T(_;) denote
the statistic with the i observation removed. Let T, = n™' 37 T(_;. The
jackknife estimate of var(7,) is

n—14<% —
> (Tiy = Tn)?

=1

Vjack =
n

and the jackknife estimate of the standard error is 5€4cx = \/Ujack- This
formula is very nonintuitive. It makes sense that the variance should involve
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Figure 8.5.1. Patch data.
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> P (Ti—iy — Tn)? but where does the (n — 1)/n term come from? The
answer is related to the fact that 7, and 7{_;y are based on different numbers
of observations. To make the jackknife give the right answer in the special
case T, = X, the factor (n — 1)/n turns out to be just what we need. See
below for more discussion on this point.

Under suitable conditions on T, it can be shown that vj,q consistently

estimates var(7},) in the sense that vj,q./var(T,) = 1.8

EXAMPLE 8.3 Let T, = X,. Some calculations show that v = S2/n
where S2 is the sample variance, as expected.

Once we have the estimate 8 and the standard error se = /Vjack, We can
form an approximate, Normal-based 1 — « confidence interval: §n + 242 5€.

EXAMPLE 8.4 Here is an example where the jackknife does not work.
Suppose we want to estimate the median 8 = F~Y2. The plug-in estimator
is § = F71(1/2). We defined F71(1/2) to be smallest number t such that
E,(t) > 1/2. Let Xay, .-, Xm) denote the data ordered from smallest to
largest. Then, according to our definition, 0, = X(nyj2) tf n is even and
@n = X((n+1)/2) tf n 1s odd. But it turns out that the estimated standard error
from the jackknife does not give a consistent estimate of the true standard
error. The reason is that the jackknife only works when T, is “smooth.”
The median is not a smooth functional. To see this, consider taking the
smallest data point and then increasing it. At first this will not affect the
median. FEventually, the median will jump and then it will stay constant
again. So the median does not change smoothly as we move data points
around. The bootstrap is superior because it does provide consistent estimates
of the standard error of the median (and other unsmooth functionals.)

The jackknife can also be used to estimate bias(7,) = E(T,) — 0. The
jackknife bias estimate is defined by

bjack = (TL — 1)(Tn — Tn) (4)
The bias-corrected estimate is defined to be Tj,ac = 1), — b.
Now we give some explanation about the form of the jackknife bias esti-
mate. Define the pseudo-values

Ti = nTn — (n — I)T(,i).

8Strictly speaking, the jackknife estimates the asymptotic variance.
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Tjacc can then be written as

Jjack - Z ﬂ
n.—
=1
Also, we can write
52
Vjack = — b}
ok = = 5)
where
n 1 n
L, Y (L-iymT)
ST =

is the sample variance of the pseudo-values. (One can use n instead of n — 1
in the denominator if one prefers.)

If a, and b, are sequences, we write a, = O(b,) to mean that |a,/b,]| is
bounded for all large n. For many statistics, it turns out that

a b 1
ias(7T.) = — + — _
bias(T},) e o <n3>
for some a and b. Therefore,

. a b 1
bias(T(_s) = p—] + m=1) +0 <$> :

The same expression holds for bias(T’,,). Hence,
E() = (n—1)(bias(T,) — bias(T}))
1 1 1 1 1
= (-1 l(n_l —)e (m—ﬂ“o(ﬁ)]

_ a+(2n—1)b+0(1)

n2

n  n?(n-—1)

= bias(T,) + O (%)

which shows that bj,.; estimates the bias up to order O(n’Q). Also,

bias(Tiac) = —% +0 (%) =0 ( : )

n(n—1 n?

so the bias of Tj, is an order of magnitude smaller than that of T;,.
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8.5 Appendix: Bootstrap Percentile Confidence Inter-
vals

Suppose there exists a monotone transformation U = m(T") such that U ~
N(¢,c?) where ¢ = m(f). We do not suppose we know the transformation,
only that one exist. Let Uy = m(1y). Note that Uy, o) = m(1{}s,s)) since a
monotone transformation preserves quantiles. Since, U ~ N (¢, c?), the a/2
quantile of U is ¢ — 24/2¢. And, Ulp, s is the a/2 quantile so Ulp, s =
¢ — zq/2¢. Similar comments apply to the upper quantiles. Therefore,

Pr{Tg4/2 <0 <Tha_qset = Pr{m(Tpg,,.) <m(0) <m(Tpu_a/)}
Pr{Ugqas2 < ¢ < Upi_aj2}
~ Pr{U —czao < ¢ < U + czq)2}

S Za/Z}

= PI‘{—Z&/Q < QS

= 1-a.
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