11 Parametric Inference III:
Bayesian Inference.

11.1 The Bayesian Philosophy

The statistical theory and methods that we have discussed so far are known
as frequentist (or classical) inference. The frequentist point of view is based
on the following postulates:

(i) Probability refers to limiting relative frequencies.

(ii) Probabilities are objective properties of the real world.

(iii) Parameters are fixed, (usually unknown) constants. Because they are
not fluctuating, no probability statements can be made about parameters.
(iv) Statistical procedures should be designed to have well defined proba-
bilistic properties, in the sense described in (i). For example, a 95 per cent
confidence interval should trap the true value of the parameter with limiting
frequency at least 95 per cent.

There is another approach to inference called Bayesian inference. The
Bayesian approach is based on the following:
(i) Probability describes degree of belief, not limiting frequency. As such, we
can make probability statements about lots of things, not just data which are
subject to random variation. For example, I might say that ‘the probability
that Albert Einstein drank a cup of tea on August 1 1948” is .35. This does
not refer to any limiting frequency. It reflects my strength of belief that the
proposition is true.
(ii) Given (i), we can make probability statements about parameters, even
though they are fixed constants.
(iii) The correct way to make inferences about a parameter 6, is to produce a
probability distribution for #. Inferences, such as point estimates and interval
estimates may then be extracted from this distribution.

11.2 The Bayesian Method

Bayesian inference is usually carried out in the following way. We start by
expressing degrees of beliefs about a parameter 6 before we see any data. Let
f(6) denote this prior density function for . Now suppose we observe data
Xi,...,Xn ~ f(x;0). In this context, f(x;0) should be interpreted as our
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beliefs about the data given € so we now write f(x|6) instead of f(x;#). The
joint density of the data given 8 is f(z1,...,2,|0) = II; f(z;|0). Once we see
the data, we want to compute the distribution for € give the observed data.
We call this the posterior distribution. How do we compute this posterior
distribution?

First, suppose that 0 is discrete and that there is a single, discrete ob-
servation X. We should use a capital letter now to denote the parameter
since we are treating it like a random variable so let © denote the parameter.
Now, in this discrete setting,

P(X =2,06=0) P(X =2|©=0)P(©=10)

PO =0 =) == o S, PX=20=0P©O =0

which you may recognize from earlier in the course as Bayes’ theorem. The
version for continuous variables is obtained by using density functions:

f(z]6)f(6)
flz) = .
0D = Tl s @)
Now if we have n iid observations X7, ..., X,, we should replace f(z|f) with

_ [, 2a]0) F(0)
[ (@, 2,]0)F(0)dO

Note that f(zy,...,z,|0) = II; f(z:|0) = L,(0), the likelihood function, so
we can rewrite this as

f(0|$1, Ce ,.Qin)

 L.0)100)
J £n(0)f(0)do
Finally, note that [ £,(6)f(6)df is a constant that does not depend on 6; we

call this quantity the normalizing constant. So we can write the last equation
as

f(0|a:1, . ,xn)

or
“posterior is proportional to likelihood times prior.”

We will make one more notational simplification. We will write X™ to mean
(X1,...,X,) and 2" to mean (x1,...,2,). With this notation, Bayes’ theo-
rem is f(0|z") o< L,(0)f(f). You might wonder, doesn’t it cause a problem

115



to throw away the constant [ £,,(0)f(6)df? The answer is that we can always
figure out what the constant is since we know that [ f(0|z™)df = 1. Hence,
we often omit the constant until we really need it.

What do we do with the posterior? First, we can get a point estimate
by summarizing the center of the posterior. Typically, one uses the mean or
mode of the posterior. The posterior mean is

9, = /Hf(H\x”)dH.

We can also obtain a Bayesian interval estimate. Find a and b such that
2 f(0]2™)do = [° f(0]x™)d8 = /2. Let C' = [a,b]. Then

b
PO € Clz") = / F(0lz")d0 =1 —a
so C is a 1 — « posterior interval.

EXAMPLE 11.1 Let Xy,..., X, ~ Ber(p). Suppose we take the uniform
distribution f(p) = 1 as a prior. By Bayes’ theorem the posterior has the
form

f(plz™) o« f(p)La(p) = p*(1 —p)"* = p* (1 — p) !

where s = Y, x; is the number of heads. Recall that random variable has a
Beta distribution with parameters a and B if its density is

— F(Oj + ﬁ) pa—l
[(a)T(B)

So we see that the posterior for p is a Beta distribution with parameters s+ 1
andn — s+ 1. That is,

f(p; a, B) (1—p)*.

ny _ I'(n+2) (s41)-171 _ \(n—s+1)—
o) = i s n? | O P

We write this as
plz™ ~ Beta(s+ 1,n — s+ 1).

Notice that we have figured out the normalizing constant without actually
doing the integral [ L, (p)f(p)dp. The mean of a Beta («, ) is a/(a + ()
(see Chapter 3) so the Bayes estimator is

s+1
n+2

p:

116



It is instructive to rewrite the estimator as
pP= )‘nﬁ+ (1 - )‘n)ﬁ

where p = s/n is the mle, p = 1/2 is the prior mean and \, = n/(n+2) ~ 1.
A 95 per cent posterior interval can be obtained by numerically finding a and
b such that [° f(plz™)dp = .95. We can do this in R as follows:

#i## Let’s generate some Bernouliis from p=.3, say

n <- 20
x <- rbinom(n,1,.3)
print (x)

s <- sum(x)

grid <- seq(0,1,length=1000)

posterior <- dbeta(grid,s+1, n-s+1) ### compute the posterior density
###plot it

plot(grid,posterior,type="1",xlab="p",ylab="posterior density")

###find interval

left <- gbeta(.025,s+1,n-s+1)

right <- gbeta(.975,s+1,n-s+1)

interval <- c(left,right)

print(interval)

Suppose that instead of a uniform prior, we use the prior p ~ Beta(a, ().
If you repeat the calculations above, you will see that p|x™ ~ Beta(a+ s, 5+
n — s). The flat prior is just the special case with o« = = 1. The posterior

mean 1S
__a+s n 54 a+ 3
P=aiB+n \axp+n)P T \axprn)P

where py = a/(a+ ) is the prior mean.

In the previous example, the prior was a Beta distribution and the pos-
terior was a Beta distribution. When the prior and the posterior are in the
same family, we say that the prior is conjugate.

EXAMPLE 11.2 Let Xi,...,X, ~ N(0,0%). For simplicity, let us assume
that o is known. Suppose we take as a prior § ~ N(a, bi) In the homework,
you will be asked to show that the posterior for 0 is N(0,7%) where

=wX+ (1-w)a
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where .
=5 1 1 1

2
w = —5¢ and —=—+—
562 b% 7'2 862 b2

and se = o /\/n is the standard error of the mle X. This is another example
of a conjugate prior. Note that w — 1 and T/se = 1 as n — o0. So, for
large n, the posterior is approzimately N(0,se?). The same is true if n is
fized but b — oo, which corresponds to letting the prior become very flat.

Continuing with this example, let is find C = [c,d] such that Pr(f €
C|X™) = .95. We can do this by choosing ¢ such that Pr(f < c/X™) = .025
and Pr(0 > d|X™) = .025. So, we want to find ¢ such that

PO < c|X") = P(e_e < C_H\X">
T T

= P<Z< d) = .025.
T

Now, we know that P(Z < —1.96) = .025. So

c—10

=-1.96

-

implying that ¢ = @ — 1.967. By similar arguments, d = 0 +1.96. So a 95
per cent Bayesian interval is 0 + 1.96 7. Since 0~ 0 and T ~ se, the 95 per
cent Bayesian interval is approximated by 6 +1.96 se which is the frequentist
confidence interval.

11.3 Functions of Parameters

How do we make inferences about 7 = ¢g(#)? Remember earlier we solved the
following “change of variables” problem: given the density fx for X, find the
density for Y = g(X). We simply apply the same reasoning. The posterior
cdf for 7 is

H(rlz") = P(9(0) <7) = [ f(0la™)d0

where A = {6 : ¢(f) < 7}. The posterior density is h(r|z") = H'(r|z").
There is nothing new except Greek letters instead of Latin letters.
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11.4 Simulation

The posterior can often be approximated by simulation. Suppose we draw
01,...,0p ~ p(0|z™). Then a histogram of 61, ...,0p approximates the poste-
rior density p(f|z™). An approximation to the posterior mean 6, = E(f[z")
is

1 B
— > 0.
520

The posterior 1 — « interval can be approximated by (6%/2, 0'=%/2) where 62/
is the «/2 sample quantile of 8y, ...,605.

Simulation makes the change-of-variables problem easier. Once you have
a sample 6y, ...,0p from f(@|z"), let 7, = g(6;). Then 7,...,7p is a sample
from f(r|z™). This avoids the need to do any analytical calculations.

EXAMPLE 11.3 Let X,..., X, ~ Bernoulli(§) and f(8) = 1. The poste-
rior is Beta(s + 1,n — s + 1) where s = Y; ;. We can draw samples from
the posterior as follows:

B <- 10000

theta <- rbeta(B, s+1, n-s+1)

hist (theta)

theta.bar <- mean(theta)

interval <- quantile(theta, c¢(.025,.975))

If we want to make inferences about 7 = log(6/(1 — 6)) we just do this:

tau <- log(theta)

hist (tau)

tau.bar <- mean(tau)

interval <- quantile(tau, c(.025,.975))

11.5 Large Sample Properties of Bayes’ Procedures.

In the last example, we saw that the posterior mean was close to the mle and
the posterior interval was similar to the confidence interval. This is true in
greater generality.

119



THEOREM 11.1 Under weak conditions, we have that the posterior is ap-
prozimately N (0, se®). Hence, 0, ~ 0,,. Also, if C = [0, — z4/25€, Op, + 2o 25€]
15 the usual 1 — o mle-based confidence interval, then

Pr(@ e C|X") —»1-q.
There is also a Bayesian delta method. Let 7 = ¢g(6). Then

7| X" = N(7,5€%)

where 7 = ¢(#) and se = se |¢'(0)|.

SUMMARY. The frequentist large sample result is:
0, ~ N(8, se?).
The Bayesian result is
0| X" ~ N(8, se?) ~ N(8, se?).

The interpretations are different but the estimates and intervals are approx-
imately the same.

11.6 Flat Priors, Improper Priors and “Noninforma-
tive” Priors.

A big question in Bayesian inference is: where do you get the prior f(#)? One
school of thought, called “subjectivism” says that the prior should reflect our
subjective opinion about # before the data are collected. This may be possible
in some cases but seems less plausible in complicated problems especially if
there are many parameters. An alternative is to try to define some sort of
“noninformative prior.” An obvious candidate for a noninformative prior is
to use a “flat” prior f(6) o constant.

In the Bernoulli example, taking f(p) = 1 leads to p|X™ ~ Beta(s+1,n—
s+ 1) as we saw earlier which seemed very reasonable. But unfettered use
of flat priors raises some questions.

IMPROPER PRIORS. Consider the N(f,1) example. Suppose we adopt
a flat prior f(f) o ¢ where ¢ > 0 is a constant. Note that [ f(#)df = oo
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so this is not a real probability density in the usual sense. We call such a
prior an improper prior. Nonetheless, we can still carry out Bayes’ theorem
and compute the posterior density f(6) o< £, (6)f(0) «x L,(#). In the normal
example, this gives §| X" ~ N(X,0?/n) and the resulting point and interval
estimators agree exactly with their frequentist counterparts. In general, im-
proper priors are not a problem as long as the resulting posterior is a well
defined probability distribution.

FrAT PRIORS ARE NOT INVARIANT. Go back to the Bernoulli example
and consider using the flat prior f(p) = 1. Recall that a flat prior presumably
represents our lack of information about p before the experiment. Now let
¥ = log(p/(1—p)). This is a transformation and we can compute the resulting
distribution for 1. It turns out that

e?

fu(¥) = At e

But one could argue that if we are ignorant about p then we are also ignorant
about 1 so shouldn’t we use a flat prior for 1?7 This contradicts the prior
fu(v) for ¢ that is implied by using a flat prior for p. In short, the notion of
a flat prior is not well-defined because a flat prior on a parameter does not
imply a flat prior on a transformed version of the parameter. Flat priors are
not transformation invariant.

JEFFREYS’ PRIOR. Jeffreys came up with a “rule” for creating priors.
The rule is: take f(0) o< I(#)'/2 where I() is the Fisher information function.
This rule turns out to be transformation invariant. There are various reasons
for thinking that this prior might be a useful prior but we will not go into
details here.

EXAMPLE 11.4 Consider the Bernoulli (p). Recall that
1
I(p) =

p(1—p)
Jeffrey’s rule says to use the prior

f(p) o< \[1(p) = p~/2(1 = p)~2.
This is a Beta (1/2,1/2) density. This is very close to a uniform density.

In a multiparameter problem, the Jeffreys’ prior is defined to be f(6)
detI(f) where det(A) denotes the determinant of a matrix A.
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11.7 Multiparameter Problems

In principle, multiparameter problems are handled the same way. Suppose
that @ = (61, ...,0,). The posterior density is still given by

p(02"™) o< Ln,(0) (0).

The question now arises of how to extract inferences about one parameter.
The key is find the marginal posterior density for the parameter of interest.
Suppose we want to make inferences about #;. The marginal posterior for 6,
is

£(6:]2™) :/---/f(al,---,ep\x")dGQ...dep.

In practice, it might not be feasible to do this integral. Simulation can help.
Draw randomly from the posterior:

0, ...,0°% ~ f(0]2")
where the superscripts index the different draws. Each 67 is a vector 6/ =
64,..., 67). Now collect together the first component of each draw:
o1, 0P,
These are a sample from f(6;]|z") and we have avoided doing any integrals.

EXAMPLE 11.5 (Comparing two binomials.) Suppose we have ny con-
trol patients and ngy treatment patients and that X, control patients survive
while Xy treatment patients survive. We want to estimate 7 = g(p1,p2) =
po — p1- Then,

X; ~ Binomial(ni,p1) and Xy ~ Binomial(nsg, ps).
Let us adopt the prior f(p1,pe) = 1. The posterior is

ni—ri n2—r2

f(p1, p2|w1, 22) o pi* (1 — p1) p3*(1 = p2)
Notice that (p1,p2) live on a rectangle (a square, actually) and that

f(P1,p2|m1,22) = f(p1]|21) f(p2l|2)
where

n1—r1 n2—r2

f(pilz1) o p7* (1 = p1) and  f(p2|za) o< p3>(1 — pa2)

which implies that p1 and py are independent under the posterior. Also,
p1|z1 ~ Beta(zy + 1,n1 — 21 + 1) and pa|zs ~ Beta(zo + 1,n9 — 20 +1). We
can simulate from the posterior for T as follows:
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B <- 10000

pl <- rbeta(B,x1+1, nl-x1+1)
p2 <- rbeta(B,x2+1, n2-x2+1)
tau <- p2 - pil

11.8 Appendix

Proof of Theorem 11.1.
It can be shown that the effect of the prior diminishes as n increases so
that f(0|X") o< L,(0)f(0) = L,(0). Hence, log f(0|X™) ~ £(0) where £(0) =

log £,,(f) is the log-likelihood function. Now, £(0) =~ £(0) + (6 — )¢ (6) +

(0 — 6)%/2]€"(0) = £(0) + [(0 — 0)%/2]¢"(0) since ¢'(§) = 0. Exponentiating,
we get approximately that

n 1 (0 - 5)2
P
where
9 1
o, =——=—.
gu(en)

So the posterior of @ is approximately Normal with mean 0 and variance o2.
Let ¢; = log f(X;|6), then

-~

-2 — —E”(Hn)
= Z_Eg(gn)
= Y46

nEp [~/ (0,)]

~

= nl(6,)

Q
I

Q

-~

and hence o, ~ se(f).
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