Homework 11 Due Friday Nov 30

(1) Consider problem 3 from Homework 10. Suppose the data are:

3.23	-2.50	1.88	-0.68	4.43	0.17
1.03	-0.07	-0.01	0.76	1.76	3.18
0.33	-0.31	0.30	-0.61	1.52	5.43
1.54	2.28	0.42	2.33	-1.03	4.00
0.39					

Find the mle $\hat{\tau}$. Find the standard error using the delta method. Find the standard error using the parametric bootstrap.

(2) Let $X_1, ..., X_n$ Normal $(\mu, 1)$. Let $\theta = e^{\mu}$ and let $\hat{\theta} = e^{\overline{X}}$ be the mle. Create a data set (using $\mu = 5$) consisting of n=100 observations.

(2a) Use the delta-method to get the se and 95 percent confidence interval for θ . Use the parametric bootstrap to get the se and 95 percent confidence interval for θ . Use the nonparametric bootstrap to get the se and 95 percent confidence interval for θ . Compare your answers.

(2b) Plot a histogram of the bootstrap replications for the parametric and nonparametric bootstraps. These are estimates of the distribution of $\hat{\theta}$. The delta method also gives an approximation to this distribution namely, Normal($\hat{\theta}, se^2$). Compare these to the true sampling distribution of $\hat{\theta}$. Which approximation, parametric bootstrap, bootstrap, or delta method is closer to the true distribution?

(3) Let $X_1, ..., X_n$ Unif $(0, \theta)$. The mle is $\hat{\theta} = X_{max} = \max\{X_1, ..., X_n\}$. Generate a data set of size 50 with $\theta = 1$.

(3a) Find the distribution of $\hat{\theta}$. Compare the true distribution of $\hat{\theta}$ to the histograms from the parametric and nonparametric bootstraps.

(3b) This is a case where the nonparametric bootstrap does very poorly. In fact, we can prove that this is the case. Show that, for the parametric bootstrap $P(\hat{\theta}^* = \hat{\theta}) = 0$ but for the nonparametric bootstrap $P(\hat{\theta}^* = \hat{\theta}) \approx .632$. Hint: show that, $P(\hat{\theta}^* = \hat{\theta}) = 1 - (1 - (1/n))^n$ then take the limit as n gets large.

(4) Suppose that 50 people are given a placebo and 50 are given a new treatment. 30 placebo patients show improvement while 40 treated patients show improvement. Let $\tau = p_2 - p_1$ where p_2 is the probability of improving under treatment and p_1 is the probability of improving under placebo.

(4a) Find the mle of τ . Find the standard error and 90 per cent confidence interval using the delta method.

Note: Let $X_1 = 30$ and $X_2 = 40$. Treat (X_1, X_2) as a single observation with probability function $f(x_1, x_2; p_1, p_2, n_1, n_2) = f(x_1; p_1, n_1)f(x_2; p_2, n_2)$ where f(x; p, n) is a Binomial. Compute the Fisher information from $f(x_1, x_2; p_1, p_2, n_1, n_2)$; there is no need to divide the resulting standard error by \sqrt{n} .

(4b) Find the standard error and 90 per cent confidence interval using the bootstrap.

(4c) Use the prior $f(p_1, p_2) = 1$. Use simulation to find the posterior mean and posterior 90 per cent interval for τ .

(4d) Let

$$\psi = \log\left(\left(\frac{p_1}{1-p_1}\right) \div \left(\frac{p_2}{1-p_2}\right)\right)$$

be the log-odds ratio. Note that $\psi = 0$ if $p_1 = p_2$. Find the mle of ψ . Use the delta method to find a 90 per cent confidence interval for ψ .

(4e) Use simulation to find the posterior mean and posterior 90 per cent interval for ψ .

(5) Let $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$. Assume that σ is known. Use the prior $\theta \sim N(a, b^2)$. Show that $\theta | x^n \sim N(\overline{\theta}, \tau^2)$ where

$$\overline{\theta} = w\overline{X} + (1 - w)a,$$
$$w = \frac{\frac{1}{se^2}}{\frac{1}{se^2} + \frac{1}{b^2}} \text{ and } \frac{1}{\tau^2} = \frac{1}{se^2} + \frac{1}{b^2}$$

and $se = \sigma/\sqrt{n}$ is the standard error of the mle \overline{X} .

(6) Consider the Bernoulli(p) observations

0101000000

Plot the posterior for p using these priors: Beta(1/2,1/2), Beta(1,1), Beta(10,10), Beta(100,100).

(7) Let $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$.

(7a) Let $\lambda \sim \text{Gamma}(\alpha, \beta)$ be the prior. Show that the posterior is also a Gamma. Find the posterior mean.

(7b) Find the Jeffreys' prior. Find the posterior.