9 Parametric Inference I:
Parameters and Models

Suppose we have reason to believe that the distribution from which the data
were drawn has a density f(z; 0) where 6 is an unknown parameter or a
vector of unknown parameters. The problem of inference then reduces to the
problem of estimating the parameter 6. In some cases, we might be interested

in some function 7°(f). In the next few chapters we discuss how to infer
and 7'(6).

9.1 Parametric Models

Suppose we have iid data Xi, ..., X,, whose pdf (or mass function) is con-
tained in the set

M ={f(z;0); 0 € O}

where 6 is a real number or a vector of real numbers. We call § a parameter
and O is called the parameter space. The set of pdf’s M is called a parametric
statistical model. Our goal is to estimate € or some function of 6.

EXAMPLE 9.1 Let X,...,X, ~ Bernoulli(p). The parameter is p and
the parameter space is [0, 1].

EXAMPLE 9.2 Let X,,...,X, ~ Normal(u,o?). The parameter is § =
(n,0) is © = {(n,0) : p € R, o > 0}. Suppose we are interested in
estimating the mean of the distribution. We can write the quantity of interest
as T(u,0) = . On the other hand, suppose that X; is the outcome of a
blood test and suppose we are interested in 7, defined as the fraction of the
population whose test score is larger than 1. How do we express this? Let Z
denote a standard Normal random variable. Then

T = P(X>1)
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The parameter of interest is T = T, 0) where T'(p,0) =1 — ®((1 — p) /o).
The important point is that the quantity of interest can be thought of as a
function of the parameter 6.

EXAMPLE 9.3 Recall that X has a Gamma(a, 3) distribution if

1
pel(a)

e B x>0

fz; a,B) =

where o, f > 0 and
MNa) = / y* e Vdy
0

1s the Gamma function. The Gamma distribution is sometimes used to model
lifetimes of people, animals, and electronic equipment. Suppose we want to
estimate the average lifetime. The mean of X; is T(«, B) = o/ B; see chapter
3 for a proof.

9.2 Review of Mean Squared Error and Consistency

Let én be an estimator of . Recall that gn is consistent if @n 20, Let
0, = Ea(gn) be the expectation of f,. If 6, = 6 we say the estimator is
unbiased otherwise it is biased and we define b,, = 6,, — 0 to be the bias. Bias
is not necessarily a bad thing but we would like the bias to get small as the
sample size increases. Recall that the MSE (mean squared error) is defined

by MSE = Ey(8, — 6)2. Earlier we showed that
MSE = Vary(6,) + bias.
If Varg(é;) and bias both tend to 0, then 0, > 0 and hence 6, 2 6. So one

way to show that 6, is consistent is to show that the bias and variance go to
0.
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