9 Parametric Inference I Parameters and Models

Suppose we have reason to believe that the distribution from which the data were drawn has a density $f(x; \theta)$ where θ is an unknown parameter or a vector of unknown parameters. The problem of inference then reduces to the problem of estimating the parameter θ . In some cases, we might be interested in some function $T(\theta)$. In the next few chapters we discuss how to infer θ and $T(\theta)$.

9.1 Parametric Models

Suppose we have iid data X_1, \ldots, X_n whose pdf (or mass function) is contained in the set

$$\mathcal{M} = \{ f(x; \theta); \ \theta \in \Theta \}$$

where θ is a real number or a vector of real numbers. We call θ a parameter and Θ is called the parameter space. The set of pdf's \mathcal{M} is called a *parametric* statistical model. Our goal is to estimate θ or some function of θ .

EXAMPLE 9.1 Let $X_1, ..., X_n \sim \text{Bernoulli}(p)$. The parameter is p and the parameter space is [0, 1].

EXAMPLE 9.2 Let $X_1, \ldots, X_n \sim \text{Normal}(\mu, \sigma^2)$. The parameter is $\theta = (\mu, \sigma)$ is $\Theta = \{(\mu, \sigma) : \mu \in \mathcal{R}, \sigma > 0\}$. Suppose we are interested in estimating the mean of the distribution. We can write the quantity of interest as $T(\mu, \sigma) = \mu$. On the other hand, suppose that X_i is the outcome of a blood test and suppose we are interested in τ , defined as the fraction of the population whose test score is larger than 1. How do we express this? Let Z denote a standard Normal random variable. Then

$$\tau = P(X > 1)$$

$$= 1 - P(X < 1)$$

$$= 1 - P\left(\frac{X - \mu}{\sigma} < \frac{1 - \mu}{\sigma}\right)$$

$$= 1 - P\left(Z < \frac{1 - \mu}{\sigma}\right)$$

$$= 1 - \Phi\left(Z < \frac{1 - \mu}{\sigma}\right).$$

The parameter of interest is $\tau = T(\mu, \sigma)$ where $T(\mu, \sigma) = 1 - \Phi((1 - \mu)/\sigma)$. The important point is that the quantity of interest can be thought of as a function of the parameter θ .

EXAMPLE 9.3 Recall that X has a Gamma(α, β) distribution if

$$f(x; \alpha, \beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, \quad x > 0$$

where $\alpha, \beta > 0$ and

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$

is the Gamma function. The Gamma distribution is sometimes used to model lifetimes of people, animals, and electronic equipment. Suppose we want to estimate the average lifetime. The mean of X_i is $T(\alpha, \beta) = \alpha/\beta$; see chapter 3 for a proof.

9.2 Review of Mean Squared Error and Consistency

Let $\widehat{\theta}_n$ be an estimator of θ . Recall that $\widehat{\theta}_n$ is consistent if $\widehat{\theta}_n \stackrel{p}{\to} \theta$. Let $\overline{\theta}_n = E_{\theta}(\widehat{\theta}_n)$ be the expectation of $\widehat{\theta}_n$. If $\overline{\theta}_n = \theta$ we say the estimator is unbiased otherwise it is biased and we define $b_n \equiv \overline{\theta}_n - \theta$ to be the bias. Bias is not necessarily a bad thing but we would like the bias to get small as the sample size increases. Recall that the MSE (mean squared error) is defined by $MSE = E_{\theta}(\widehat{\theta}_n - \theta)^2$. Earlier we showed that

$$MSE = Var_{\theta}(\widehat{\theta_n}) + bias^2.$$

If $\operatorname{Var}_{\theta}(\widehat{\theta_n})$ and bias both tend to 0, then $\widehat{\theta_n} \stackrel{q.m.}{\to} \theta$ and hence $\widehat{\theta_n} \stackrel{p}{\to} \theta$. So one way to show that $\widehat{\theta_n}$ is consistent is to show that the bias and variance go to 0.