Homework 1: Solutions

- **1.** Let $B_n = \bigcup_{i=n}^{\infty} A_i$ and $C_n = \bigcap_{i=n}^{\infty} A_i$.
- (1a) $s \in C_n \Longrightarrow s \in \bigcap_{i=n}^{\infty} A_i \Longrightarrow s \in \bigcap_{i=n+1}^{\infty} A_i \Longrightarrow s \in C_{n+1}$. Therefore, $C_n \subset C_{n+1}$.
- $s \in B_n \Longrightarrow s \in \bigcup_{i=n}^{\infty} A_i \Longrightarrow s \in A_{n-1} \cup (\bigcup_{i=n}^{\infty} A_i) \Longrightarrow s \in \bigcup_{i=n-1}^{\infty} A_i \Longrightarrow s \in B_{n-1}$. Therefore, $B_n \subset B_{n-1}$.
- (1b) If $s \in A_n$ i.o. then $s \in \bigcup_{i=n}^{\infty} A_i$ for all $n \Longrightarrow s \in B_n$ for all $n \Longrightarrow s \in \bigcap_{n=1}^{\infty} B_n$.

If $s \notin A_n$ i.o. then there exists n such that $s \notin A_j$ for all $j > n \Longrightarrow s \notin \bigcup_{i=n+1}^{\infty} \Longrightarrow s \notin B_{n+1} \Longrightarrow s \notin \bigcap_{n=1}^{\infty} B_n$. Thus, $s \in \bigcap_{n=1}^{\infty} B_n \Longrightarrow$ that $s \in A_n$ i.o..

(1c) $s \in A_j$ ult. $\Longrightarrow s \in A_j$ for all $j \ge n$ (for some n) $\Longrightarrow s \in \bigcap_{j=n}^{\infty} A_j = C_n \Longrightarrow s \in \bigcup_{n=1}^{\infty} C_n$.

 $s \in \bigcup_{n=1}^{\infty} \overset{\sim}{C_n} \Longrightarrow s \in C_n$ for some $n \Longrightarrow s \in \bigcap_{j=n}^{\infty} A_j \Longrightarrow s \in A_j$ for all $j \ge n \Longrightarrow s \in A_j$ ult.

2. $s \in (\cup_i A_i)^c$ iff $s \notin \cup_i A_i$ iff $s \notin A_i$ for all i iff $s \in A_i^c$ for all i iff $s \in \cap_i A_i^c$.

 $s \in (\cap_i A_i)^c$ iff $s \notin \cap_i A_i$ iff $s \notin A_i$ for some i iff $s \in A_i^c$ for some i iff $s \in \cup_i A_i^c$.

- **3.** Suppose there exists a P that is uniform on S. Then there is a constant c such that $c = P(\{s_i\})$ for all i. If c = 0 then $1 = P(S) = \sum_i P(\{s_i\}) = 0$ which is a contradiction. If c > 0 then $1 = P(S) = \sum_i P(\{s_i\}) = \infty$ which is a contradiction.
- **4.** Let $B_n = A_n \bigcup_{i=1}^{n-1} A_i$. Consider j < n. If $s \in B_j$ then $s \in A_j$. If $s \in B_n$ then $s \notin \bigcup_{i=1}^{n-1} A_i$ and hence $s \notin A_j$. Thus, $B_j \cap B_n = \emptyset$.

Next we claim that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$. Let $s \in \bigcup_{i=1}^{\infty} A_i$. Then $s \in A_n$ for at least one n. Let n_0 be the smallest such n. Then $s \in A_{n_0}$, but for $j < n_0, s \notin A_j$. Thus, $s \in B_n$ and therefore $s \in \bigcup_{i=1}^{\infty} B_i$. This shows that

 $\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} B_i$. Now let $s \in \bigcup_{i=1}^{\infty} B_i$. Then $s \in B_n$ for some n. Hence, $s \in A_n$ and hence $s \in \bigcup_{i=1}^{\infty} A_i$. This shows that $\bigcup_{i=1}^{\infty} B_i \subset \bigcup_{i=1}^{\infty} A_i$. Therefore $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$.

Also note that $B_n \subset A_n$ and so $P(B_n) \leq P(A_n)$. Finally,

$$P\left(\cup_{i=1}^{\infty}A_{i}\right) = P\left(\cup_{i=1}^{\infty}B_{i}\right) \quad \text{since } \cup_{i=1}^{\infty}A_{i} = \cup_{i=1}^{\infty}B_{i}$$

$$= \sum_{i}P(B_{i}) \quad \text{since the } B_{i} \text{ are disjoint}$$

$$\leq \sum_{i}P(A_{i}) \quad \text{since } P(B_{i}) \leq P(A_{i}).$$

5. From question 4 we get that $P(\cup_i A_i^c) \leq \sum_i P(A_i^c) = 0$ since $P(A_i^c) = 1 - P(A_i) = 0$. Hence, $1 - P(\cup_i A_i^c) \geq 1$. Now,

$$1 \geq P(\cap_i A_i)$$

$$= 1 - P(\cap_i A_i)^c$$

$$= 1 - P(\cup_i A_i^c)$$

$$\geq 1.$$

Therefore, $1 = P(\cap_i A_i)$.