Solutions to Homework 2

(1) Define B_n as in the hint. Consider $j \neq i$. Without loss of generality, assume j < i. If $s \in B_j$ then $s \in A_j$ so $s \notin B_i$. If $s \in B_i$ then $s \in A_j^c$ so $s \notin B_j$. Hence $B_i \cap B_j = \emptyset$. If $s \in \bigcup_{i=1}^{\infty} A_i$ then $s \in A_n$ for some n. Hence, $s \in B_n$ and thus $s \in \bigcup_{i=1}^{\infty} B_i$. This shows that $\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} B_i$. If $s \in \bigcup_{i=1}^{\infty} B_i$ then $s \in B_n$ then for some n which implies that $s \in A_n$ and so $s \in \bigcup_{i=1}^{\infty} A_i$. Therefore, $\bigcup_{i=1}^{\infty} B_i \subset \bigcup_{i=1}^{\infty} A_i$ and so $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$. Careful inspection of this argument shows that it is also true that $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$ for each n. Finally,

$$\begin{split} P\left(\cup_{i=1}^{\infty}A_{i}\right) &= P\left(\cup_{i=1}^{\infty}B_{i}\right) \\ &= \sum_{i=1}^{\infty}P(B_{i}) \quad \text{since the } B_{n}'s \text{ are disjoint} \\ &= \lim_{n\to\infty}\sum_{i=1}^{n}P(B_{i}) \quad \text{definition of infinite sum} \\ &= \lim_{n\to\infty}P\left(\cup_{i=1}^{n}B_{i}\right) \quad \text{since the} B_{n}'s \text{ are disjoint} \\ &= \lim_{n\to\infty}P\left(\cup_{i=1}^{n}A_{i}\right) \quad \text{since } \cup_{i=1}^{n}A_{i} = \cup_{i=1}^{n}B_{i} \\ &= \lim_{n\to\infty}P(A_{n}) \quad \text{since } \cup_{i=1}^{n}A_{i} = A_{n}. \end{split}$$

(2) We are given that P(AB) = P(A)P(B). Now,

$$P(A^{c}B^{c}) = P((A \cup B)^{c})$$

$$= 1 - P(A \cup B)$$

$$= 1 - P(A) - P(B) + P(AB)$$

$$= 1 - P(A) - P(B) + P(A)P(B)$$

$$= (1 - P(A))(1 - P(B))$$

$$= P(A^{c})P(B^{c}).$$

(3a)
$$S = S_1 \cup S_2$$
 where

$$S_1 = \{s : s = (s_1, \dots, s_m), s_1 = s_2 = \dots = s_{m-1} = H \text{ and } s_m = T, m = 2, 3, \dots, \}$$

- $S_2 = \{s : s = (s_1, \dots, s_m), s_1 = s_2 = \dots = s_{m-1} = T \text{ and } s_m = H, m = 2, 3, \dots, \}.$
- (3b) Let A = "three tosses are required." Then $A = \{HHT, TTH\}$. So, $P(A) = P(\{HHT\}) + P(\{TTH\}) = P(H)P(H)P(T) + P(T)P(T)P(H) = (1/2)(1/2)(1/2) + (1/2)(1/2)(1/2) = 1/4.$
- (4a) If P(A) = 0 then $P(AB) \le P(A) = 0$. Hence, 0 = P(AB) = P(A)P(B) so A and B are independent. If P(A) = 1, then $1 \ge P(A \cup B) \ge P(A) = 1$ so $P(A \cup B) = 1$. Now $P(AB) = P(A) + P(B) P(A \cup B) = 1 + P(B) 1 = P(B) = 1 \times P(B) = P(A)P(B)$.
- (4b) $P(A \cap A) = P(A)P(A)$. But $P(A \cap A) = P(A)$ so P(A) = P(A)P(A). Thus, P(A) = 0 or 1.