10 Parametric Inference II:
Maximum Likelihood

The most common method for estimating parameters in a parametric model
is the mazimum likelihood method. Let Xi,..., X, be iid with pdf f(z;0).
The likelihood function is defined by

n

£a(6) = T] £(X::6).

i=1

The likelihood function is just the joint density of the data, except that we
treat it is a function of the parameter 6. ~

The mazimum likelihood estimator (mle), denoted by 6,, is the value
of 6 that maximizes £, (f). The function £,(0) = logL,(0) is called the
log-likelihood function. The maximum of £,(6) occurs at the same place as
the maximum of £,(#), so maximizing the log-likelihood leads to the same
answer as maximizing the likelihood. Often, it is easier to work with the
log-likelihood. Why (or rather, when) is the mle a good estimator? We defer
this question until later.

REMARK 10.1 If we multiplied L,,(0) by any positive constant ¢ (not de-
pending on ) then this will not change the mle. Hence, we shall often be
sloppy about dropping constants in front of the likelihood.

EXAMPLE 10.1 Consider flipping a coin n times resulting in data X, ..., X,
where X; € {0,1}. The probability function for a single toss is f(x;0) =
0% (1 — 0)'~* for x =0,1. The unknown parameter is 0. Then,

n

Ln(0) =] f(Xi;0) = f[eXi(1 —0) X =951 — 0)~ "

i=1
where S =Y, X;. Hence,
2,(0) = Slogf + (n — S)log(1 —0).

Take the derivative of £,(0), set it equal to 0 to find that 0, = S/n.
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EXAMPLE 10.2 Let Xy,..., X, ~ N(u,0?) so that § = (u,0) represent
the unknown parameters. The likelihood function is

Ln(p,0) = Hlexp{— . (Xi—u)Q}

o 202

n nS? n(X — p)?
= O exp{—ﬁ}exp{—%}

where X = n 'Y, X; is the sample mean and S? = n 1 Y ;(X; — X)? is the
sample variance. The last equality above follows from the fact that ¥ ;(X; —
w)? = nS% + n(X — p)? which can be verified by writing 3,;(X; — p)? =
> (X;— X + X — p)? and then expanding the square. Thus, the log-likelihood

is
nS?  n(X — u)?
14 = —nlogo — — :

(u,0) nlogo — o 57

Solving the equations

0Up0) _ o g 24H:0)

o oo

=0

we conclude that i = X and 6 = S. (It can be verified that these are indeed
global mazima of the likelihood.)

EXAMPLE 10.3 Suppose that Xi,...,X, ~ Bernoulli(p) and that p €
{1,.2,6} = A. Let S =Y; X;. The likelihood is L(p) = p°(1 — p)"=5 for
p € A and 0 otherwise. The mle p is the element p; € A closest to S/n.

EXAMPLE 10.4 (A HARD EXAMPLE.) Here is the one that confuses
everyone. Let X1,..., X, ~Unif(0,0). Let us find L,(6) and then 6,,. First,
note that

1L o<z<0
. — 1] — —
f(;0) = { 0 otherwise.

Consider a fixed value of 6. Suppose there were some X; such that 0 < X;.
Then, f(X;;0) = 0 and hence L,(0) = II; f(Xi;0) = 0. It follows that
L,(0) = 0 if any X; > 0. In other words, L,(0) = 0 if 0 < Xmax where
Xmax = max{ Xy, ..., Xp}. Now consider a 0 > Xmyax. For every X; we then

101



have that f(X;;0) = 1/0 so that L£,(0) = T1; f(X;;0) = ™. In conclusion
we see that "
(1) 0> X

L,0)=
(6) {0 0 < Xmax-

Note that L,(0) is strictly decreasing over the interval [Xmax,00). Hence,
en = Xnax-

10.1 Properties of Maximum Likelihood Estimators.

The maximum likelihood estimator (mle) @n possesses many properties that
make it an appealing choice of estimator. We will now list these properties
although, at this point, they will sound mysterious. The properties of the
mle are:

(1) It is consistent: 0, % 0, where , denotes the true value of the
parameter 6; R ~

(2) Tt is equivariant: if 6, is the mle of € then g(6,) is the mle of g(f);

(3) It is asymptotically Normal: /n(0 — 6,)/5¢ % N(0,1) where sé
can be computed analytically;

(4) It is asymptotically optimal: roughly, this means that among all
well behaved estimators, the mle has the smallest variance.

(5) The mle is approximately the Bayes estimator. (To be explained
later.)

We will spend some time explaining what these properties mean and why
they are good things. In sufficiently complicated problems, these properties
will no longer hold and the mle will no longer be a good estimator. But
for now we focus on the simpler situations where the mle works well. The
properties we discuss only hold if the model satisfies certain “regularity con-
ditions.” These are essentially smoothness conditions on f(z;6). We shall
tacitly assume that these conditions hold.

10.2 Consistency of Maximum Likelihood Estimators.

Consistency means that the mle converges in probability to the true value.
To prove consistency, we need a definition. If f and g are pdf’s, define the
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Kullback-Leibler distance between f and g to be

D(f.9) = [ f@) ( )d9

It can be shown that D(f,g) > 0 and D(f,f) = 0. For any 6,7 € O
write D(60,1) to mean D(f(x; 0), f(z; 1)). Assume that 6 # ¢ implies that
D(0,%) > 0.

Let 6y denote the true value of f. The log-likelihood function is £, (6) =
>ilog f(X;; 0). Maximizing £,,(6) is equivalent to maximizing

1 f(Xi50)
Z log
TL XZ, 90)
By the law of large numbers, M, (#) converges to

By, log 2550 _ /log<f(x 0))f(a:; 0)da

f(Xi; 0o)
- —/ ( z; o) >f(:1:; B)da

= —D(6,9).

Hence, M, (0) ~ —D(fy,6) which is maximized at 6, since —D(6y,6y) = 0
and —D(6y,0y) < 0 for 6 # 6,. Hence, we expect that the maximizer will
tend to fy. To prove this formally, we need more than M, () % —D(6q,6).
We need this convergence to be uniform over . We also have to make sure
that the function D(fy, 6) is well behaved. Here are the formal details.

THEOREM 10.1 Let 6y denote the true value of 6 and define

f(X; 0)
Zl Xza 00)

and let M (0) = —D(6y,0). Suppose that

sup | M, (8) — M(9)] = 0 (6)
0c®
and that, for every e > 0,
sup M(0) < M(6y). (7)
0:/0—80|>¢

Let én denote the mle. Then @n 2 0.

9This is not a distance in the formal sense.
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PROOQF. See appendix.

10.3 Equivariance of the mle

Let 7 = ¢(#) be a one-to-one function of # with inverse h so that § = h(7).
Let 6 be the mle of # so that £,(0) > L£,(0) for any 0 # 0. Let 7 = g(f).
Hence, & = h(7). Let L(7) denote the likelihood function for 7. Then,
L(r) = II; f(zi; M(7)) = TI; f(2i;0) = L(0) where § = h(r). Let 7 be any

value not equal to 7. Then, L(7) = £(0) > L£(#) = L(7). Therefore, 7 is the
mle for 7.

EXAMPLE 10.5 Let Xq,...,X, ~ N(0,1). The mle for 0 is 0, = X,.

0 9 _ X

Let T =¢€”. Then, the mle for 7 isT =¢€” = e*.

10.4 Asymptotic Normality

It turns out that §n is approximately Normal and we can compute its variance
analytically. We need a few more definitions. s(X;80) = 0dlog f(X;8)/08.
We call s(X;60) the score function. The Fisher information is defined by
I1(0) = Eys*(X;0) = [s*(x;0)f(z;0)dz. Here is an important property of
the Fisher information which makes it easier to compute.

LEMMA 10.1 The Fisher information satisfies:

2

1(0)=E (-% log f(X; 9)) .

THEOREM 10.2 (Asymptotic Normality of the MLE.) Under appro-
priate reqularity conditions,

d
— N(0,1
— 4 N0,
where
e 1
sé = —
nl(6,)

18 the estimated standard error.

The proof is in the appendix.
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REMARK 10.2 We could define the Fisher information in terms of the
joint distribution f(xq,...,x,; 0) = [1; f(zs; 0). Denote the Fisher infor-
mation defined this way as I,(0). The standard error in this framework turns

out to be \/1/1,(0). It is easy to show that I,(0) = nI(A). Hence, we end up
with the same formula for the standard error.

Informally, the theorem says that the distribution of the mle can be ap-
proximated with N (6, 5¢°). The theorem allows us to construct an (asymp-
totic) confidence interval. Let

C, = [gn — Zq/2 5€, 0, + Za/2 5€|.
Then, it follows from the Theorem that
P0eC,) —1—a.
To see this, let Z denote a standard normal random variable. Then,

Py(0 € Cn) = Py(0n— 2025 < 0 < O + 2a/25¢)

0, — 0
= Pg (—Za/Q < — < Za/Q)
Se

N Prap < Z<zap)=1—o.

For a = .05, z4/2 = 1.96 = 2, so
0, + 25e
is an approximate 95 per cent confidence interval.

EXAMPLE 10.6 Let Xy,..., X, ~ Ber(p). The mle is p = ¥; X;/n and

f=p"(1-p)'7*, log f = xlogp+(1—2)log(1-p), s = (z/p)—(1-2)/(1-p),
and —s' = (z/p*) + (1 — x)/(1 — p)?. Thus,

il-p) _ 1
(I-p)? pl-p)

1(p) = B(=) = 5+

Hence,




So, p~ N(po,5¢%). An approzimate 95 per cent confidence interval is

. oy 1/2
1 —
ﬁi2{ﬂ__m} |
n

Compare this with the Hoeffding interval.

EXAMPLE 10.7 Let Xy,...,X, ~ N(0,0%) where o2 is known. The score
function is s(X;0) = (X — 0)/0® and s' = —1/0* so that 1(0) = 1/o*. The

mle is @ = X. According to the Theorem, X ~ N(0,02/n). In fact, in this
case, the distribution is ezxact.

EXAMPLE 10.8 Let Xi,...,X, ~ Poisson()). Then X = X. In the
homework you will calculate that I(\) = 1/X, so

~

S0, A =X ~ N(), se?).

So far, we have confined attention to models with a single parameter.
More realistically, the model will have several parameters 6 = (6y,...,6,).
The above theory extends to this case. We will discuss the extension in the
second term.

10.5 Efficiency.

Throughout the course, we will meet many estimators besides maximum
likelihood estimators. We will need a way to compare estimators. One way
to compare estimators is to use “decision theory” which we will discuss second
term. Here, we will compare estimators based on the idea of efficiency.

Let us start with an example. Suppose that X;,..., X, ~ N (8, qZ). The
mle is §n = X. Another reasonable estimator is the sample median 6,, which
is defined to be the middle of the data points after sorting the numbers. In
case n is even, the median is the average of the two middle points. The mle

satisfies ~
VB, —8) % N(0,0?).
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It can be proved that the median satisfies
S, —0) 5 N (o, 023) .

This means that the median converges to the right value but has a larger
variance than the mle.
More generally, consider two estimators 7}, and U,, and suppose that

VT, — 8) % N(0,?)

and that
ViU, = 0) % N(0, u?).
We define the asymptotic relative efficiency of U to T by ARE(U,T) = t/u.

In the Normal example, ARE(@R,@L) = \/2/7 = .798. The interpretation
is that if you use the median, you are only using about 80 per cent of the
available data.

Under appropriate conditions it can be shown that if §n is the mle and
0, is any other estimator then ARE(én,gn) < 1. This leads us to say that
mle is efficient. It has the smallest (asymptotic) variance.

WARNING: The above statements are predicated upon the assumed
model being correct. If the data are not quite Normal, then the median may
be a much better estimator than the mean.

10.6 The Delta Method.
Recall that the mle satisfies

§%N<0,n+w)>.

Suppose that 7 = ¢(f) where g is a smooth function. The maximum like-
lihood estimator of 7 is 7 = g(g) Now we address the following question:
what is the distribution of 77

To answer this question, write

~ ~ ~

7=9(0) ~ g(0) + (0 — 0)g'(0) =7+ (0 — 0)g'(0)
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where 7 = ¢(f#). Thus,

and hence
nl(0)(7T—71 ~
(g')((ﬁ) ) ~\/nl(0)(0—0).
But the mle Theorem tells us that the right hand side tends in distribution
to a N(0,1). Hence,

nI(0)(T —T)

d
— N(0,1
or, in other words,
- (4'(6))”
~ N .
' ( ni(0)

The result remains true if we substitute @ for 6 so

7~ N (7,(g(0))se*(0)) .

A~

SUMMARY. If 7 = ¢(f) then
T~ N (’7‘, 362(?))

-~ -~

where se(7) = |¢'(0)|se(0)

EXAMPLE 10.9 Let X, ..., X, ~ Ber(p). Let ¢ = log(p/(1 —p)). Find
an approrimate 95 per cent confidence interval for 1. The mle for p is
p =n"tY, X;. The Fisher information function is I(p) = 1/(p(1 — p)) so
the standard error of the mie is se = {p(1 —p)/n}'/*. Let v = g(p) =

logp/(1—p). The mle is 7,5 =logp/(1—p). Then, ¢'(p) =1/(p/(1—p)). So,
according to the delta method

- o 1
se(y) = |g'(p)|se(p) = ———=.
np(1 — p)
An approximate 95 per cent confidence interval is
~ 2
VY E ——
np(1 — p)
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EXAMPLE 10.10 Suppose that Xi,..., X, ~ N(u,0?). Suppose that p
15 known, o s unknown and that we want to estimate ¢ = logo. The log-
likelihood is £(0) = —nlogo — 54 >i(x; — p)?. Differentiate and set equal to

0 and conclude that 12
(X; — n)?
_ {Ez( ) } .
n

To get the standard error we need the Fisher information. First,

(X —p)?
1 X:0)=—-1 SN i A
og f(X;0) ogo 572
with second derivative
1 3(X —p)?
o2 ot
and hence . 252 )
o
o) =-G+a=x
Hence,

Let ¢ = g(o) = log(c). Then, )= logé. Since, g =1/0,
-~ 1 & 1

se(¥) = = 5 o

and an approximate 95 per cent confidence interval is

2
Tﬁi\/—Q—n

10.7 Multiparameter Models

These ideas can directly be extended to models with several parameters.
Here we describe the extension to two parameters; the extension to more
parameters will then be obvious. Let § = (6;,6,) and let § = (6,,6,) be the
mle. To get the standard errors of 91 and 92 we proceed as follows. Define
the Fisher Information Matriz by

_E0 (8210gf(X 0)) _E9 (62logf(X;0))

1(0) = 821 aﬁzx ) d? 1301;,(0)2(-0)
—Eg( 352391 ) —Eg( %937 )
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Let J(#) = I"'(f) be the inverse of I. The estimated standard errors of 0
and 6, are

(0 =/ 20

n

se(0,) = \/f@

where Jq; is the upper left entry of J and where Jy is the lower right entry
of J. The estimated covariance between 6; and 6, is

and

co0(0,8y) = JRT“’)

Now let 7 = g(6;,602) be a function of both parameters. Let
99
- (3)
002
be the gradient of g. The multiparameter delta method says that the esti-

-~

mated standard error of 7 = g(0) is

52(7) = \/ (Vg)TI"'(Vg)

n

where it is understood that the expression is evaluated at 6 = 0.

EXAMPLE 10.11 Let Xy,..., X, ~ N(pu,0?). Let 7 = g(u,0) = o/p. In
the homework, you will show that

I(u,0)=l";? 2]

and

Thus,




10.8 Parametric Bootstrap

Standard errors and confidence intervals may also be estimated using the
bootstrap. There is only one change. In the nonparametric bootstrap, we
sampled X7,..., X from the empirical distribution F In the parametric
bootstrap we sample instead from f(z; 0)

EXAMPLE 10.12 Recall example 10.11. To get to bootstrap standard er-
ror, simulate X1,..., X} ~ N(fi,5?), compute i* = n 'Y, X7 and 6% =
n~ 'Y (X — %)%, Then compute 7% = g(i*,0*) = 6*/1i*. Repeat this many
times and use the standard deviation of the 7*’s to estimate se(7T). This
15 much easier than doing the delta method. But the delta method has the
advantage that it gives a nice closed form expression for the standard error.

10.9 Appendix

Proof of Theorem 10.1. ~
Since 6,, maximizes M, (6), we have M, (6,) > M,(6,). Hence,

M(HO) - M(gn)

( ) Mg\on) + M(QO) - MH(HO)
0

< My(0) — M(B,) + M(6y) — My (6)
< sgp\Mn( ) — M(0)| + M(6) — My (6o)
20

where the last line follows from (6). It follows that, for any § > 0,
P (M (8,) < M(6g) — 6) — 0.

Pick any € > 0. By (7), there exists 6 > 0 such that |§ — 6y| > € implies that
M () < M(6) — 6. Hence,

P(|f, — 0o > €) < P (M(8,) < M(6) — 5) — 0.
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Proof of Theorem 10.2.
LEMMA 10.2 The score function satisfies
Ey[s(X;6)] = 0.

PROOF. Note that 1 = [ f(x;0)dz. Differentiate both sides of this equa-
tion to conclude that

0
0 = %/f(:r;ﬁ)dx

0
= /@f(x; 0)dx
Flosg)! O

dlog f(x;0) _
/Tf(x,ﬁ)dx

= /s(a:; 0)f(z;0)dx = Eys(X;0).

EXAMPLE 10.13 Let X ~ N(6,1). Then s(X;0) = X — 6 and Ey(s) =
Eo(X)—0=0—0=0.

EXAMPLE 10.14 Let X ~ Ber(p). Then A X;p) = Xlogp + (1 —
X)log(1 — p) so that s(X;p) = (X/p) — (1 — X)/(1 — p). Again we see
that E(s) = (p/p) — (1 —p)/(1 —p) =0.

PROOF OF THEOREM. Let £(0) = log £(6). Then,

0="2(0) = £'0) + (6 —0)"(6).
Rearrange the above equation to get # — 8 = —£(6)/¢"(6) or, in other words,

_ L0'(0) TOP
gy Vm
vn(® - 0) —1n(g) ~ BOTTOM
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Let Y; = O0log f(X;;0)/06. Recall that E(Y;) = 0 from the property of the
score function and also Var(Y;) = I1(#). Hence,

TOP =023V, = nY = /oY —0) S W

where W ~ N(0, 1(6)), by the central limit theorem. Let A; = —0*log f(X;;6)/06?.
Thus E(A;) = I(#). Then
BOTTOM = A % 1(9)

by the law of large numbers. Apply Slutzky’s theorem to conclude that

ﬁ(é—&)i%&\f(@,%).

Assuming that (6) is a continuous function of 8, it follows that I(6,) 2
I1(). Now

b O Jar (@), - 0)

S€E

~ L 1/2
_ al'2(6)(@, - ) {I}f;))} .

The first terms tends in distribution to N(0,1) from the proof of Version 2.
The second term tends in probability to 1. The result follows from Slutzky’s
Theorem.
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