13 Decision Theory

13.1 Preliminaries

We have considered several point estimators such as the maximum likelihood
estimator and the posterior mean. In fact, there are many ways to generate
estimators. How do we choose among them? The answer is found in decision
theory which is a formal theory for comparing estimators.

Consider a parameter # which lives in a parameter space ©. Let a be a
guess at §. We refer to a as an action. The set of possible actions is called
the action space and is denoted A. Usually, A = © but in general they can
be different. Assume that 4 = © unless otherwise specified.

We shall measure how good a guess a is using a loss function L(0,a).
Formally, L maps © x A into R. Here are some examples of loss functions:

L(#,a) = (0 — a)? squared error loss,
L(6,a) =160 — a absolute error loss,
L(f,a) = |0 —alP L, loss,
L(#,a)=0if # =a and 1 if # # a  zero-one loss,

L(0,0) = [log (52-2) f(z; 0)dz  Kullback-Leibler loss.

A decision rule 6(x) assigns an action to each outcome x. Think of a decision
rule as an estimator. Formally, if X denotes the set of possible outcomes,
then § maps X" into .A. Examples of decision rules are 6(z) = z, d(z) = 2z,
§(x) = mle and 6(z1,...,2,) = n~' X", x;. We shall often use the terms
“decision rule” and “estimator” interchangeably.

To assess a decision rule, we evaluate the average loss or risk:

R(9,6) = By [L(6,0(X))] = [ L(6,8(x))f(; 6)da.

When the loss function is squared error, the risk is just the MSE (mean
squared error), i.e.

R(0,6) = Fy(6(X) — 0)2 = MSE = Varg(6(X)) + Bias2(§(X))

where Biasy = FEpd(X) — 6.

To compare two estimators we can compare their risk functions. However,
this does not provide a clear answer as to which estimator is better. Consider
the following examples.
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EXAMPLE 13.1 Let X ~ N(0,1) and assume we are using squared error
loss. Consider two estimators (decision rules): 61(X) = X and §,(X) = 3.
The risk functions are R(0,01) = Eg(X — 0)*> = 1 and R(0,02) = Ey(3 —
0)? = (3 — ). Notice that, if 2 < 6 < 4 then R(f,0,) < R(6,61) otherwise
R(0,61) < R(0,02). Neither estimator dominates the other.

EXAMPLE 13.2 Let Xy,..., X, ~ Bernoulli(p). Consider squared error
loss and let §;(X™) = X. Since this has 0 bias, we have that

_ 1 —
R(p,8) = Var(X) = 4 - p)
Another estimator is V4
o
0o (X)) = ——
2(X7) a+pB+n

where Y =37, X; and o and B are positive constants. This is just the poste-
rior mean using a Beta («, 8) prior. Now,

R(p,0s) = Varp52+(Biasp(52))2

Y +a Y+« ?
- vor () + (B () )

Now let us choose a« = 8 = \/n/4. Later we shall see that there is a reason
for this choice. The resulting estimator is

and risk function is
n

R(p,d2) = An+ o)

The risk functions are plotted in figure 1. As we can see, neither estimator
uniformly dominates the other.
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13.2 Comparing Risk Functions

These examples highlight the need to be able to compare risk functions.
To do so, we need a one-number summary of the risk function. Two such
summaries are the mazimum risk '°

sup R(,0)
0
and the Bayes risk
r(m,0) = [ B(O,8)m(8)d8

where 7(#) is a prior for f. Decision rules that minimize the maximum risk
are called minimaz rules. Decision rules that minimize the Bayes risk are
called Bayes rules. As it turns out, there are some connections between the
two. Roughly, the minimax rule is the Bayes rule for a specially chosen prior
called the least favorable prior.

13.3 Bayes Estimators
Given a prior 7(6), the Bayes risk is defined by
mm&=/3@&ﬂmw.
The Bayes rule is the rule 6" that minimizes the Bayes risk:
r(m,0") = i%fr(w, J).

Recall that from Bayes’ theorem the posterior density is

f(z|0)n(0) _  f(x]0)7(6)
m(z) J 1 (x|0)m(0)do

fOlz) =

where m(z) = [ f(z,0)d0 = [ f(z|0)7(0)df is the Bayesian marginal distri-
bution of X. We can re-write the Bayes risk as follows:

r(r, 6) :/ﬁ@&ﬂ@m

10The expression “sup” means “supremum” which is defined to be he least upper bound.
You can think of “sup” as “max.”
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where

r(6]z) = / L(8,5(2)) f(6]2)d0

is the posterior risk. The Bayes rule is thus the rule §(z) that minimizes
the posterior risk. (If we minimize the inside integral for every x then we
minimize the whole integral.) More precisely, we have:

THEOREM 13.1 Let 6™(z) minimize the posterior risk r(0|x). Then 0™ is
the Bayes rule.

Consider squared error loss L(f, a) = (f — a)?. The Bayes rule minimizes
r(alz) = [(0 — a)?f(0]x)dO. If we take the derivative of r(a|z) with respect
to a and set it equal to 0, we get that the Bayes rule is

5(z) =a= /0f(0|:c)d0 — E(d]z).

In other words, the Bayes rule under squared error loss is the pos-
terior mean. It can be shown the Bayes rule under absolute loss L(f,a) =
|0 — a| is the posterior median. And the Bayes’ rule under the 0-1 loss
L(6,a) =1if § # a and 0 otherwise, is the posterior mode.

EXAMPLE 13.3 Let Xi,...,X, ~ N(u,0?) where o is known. Suppose
we use a N(a,b?) prior for u. The Bayes estimator with respect to squared
error loss is the posterior mean, which s

Pz
b2+£X+b2_:U_2a.
n

n
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13.4 Minimax Rules

If we do not want to include a prior, then we can summarize an estimator by
the maximum value of its risk. This leads us to choose the estimator with
the smallest maximum value. Formally, a decision rule ¢* is a minimaz rule
if
sup R(6,0%) = irélf sup R(6,90).
0 0

The problem of finding minimax rules is complicated and we cannot attempt
a complete coverage of that theory here. But we will mention a few key
results.

THEOREM 13.2 Let 6™ be the Bayes rule for some prior w, i.e.

r(m,0") = i%fr(w, J). (8)
Suppose that
R(0,0™) < r(m, ™) for all 6. 9)

Then 0™ is minimazx and 7 is called a least favorable prior.

PROOF. Suppose that §™ is not minimax. Then there is another rule 4,
such that sup, R(6, dy) < sup, R(f,6™). Since the average of a function is al-
ways less than or equal to its maximum, we have that (7, §) < sup, R(0, ).
Hence,

(7, do)

IA

sup R(6, do)
)
< sup R(6,0™)
)
r(m, ")

IA

which contradicts (8). ©

This leads immediately to the following useful theorem.

THEOREM 13.3 Suppose that § is the Bayes rule with respect to some
prior w. Suppose further that 0 has constant risk, i.e. R(6,0) = c for some
c. Then 0 is minimacz.
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PROOF. The Bayes risk is r(7,0) = [R(6,6)m(0)d0 = c and hence
R(0,0) < r(m,0) for all . Now apply the previous theorem. ©

EXAMPLE 13.4 Consider the Bernoulli with squared error loss. In exam-
ple 13.1 we showed that the estimator

sy Y/

n+/n

where Y = Y, X; has a constant risk function. Also, this estimator is the
posterior mean (and hence the Bayes rule) for the prior Beta(w,3) with

a = [ =4/n/4. Hence, it is minimaz.

EXAMPLE 13.5 Consider again the Bernoulli but with loss function

p—a)
Lip.a) = p(1—p)
Let v
(XM =p= —.
The risk 1s
(P —p)*
Rip,9) b (p(l —p)>
_ 1 p(1—p)
p(1—p) ( n )
1

Hence the risk function is constant. Also, it can be shown that for this loss
function §(X™) is the Bayes estimator with the prior w(p) = 1. (You will
show this in the homework.) Hence, p is minimaz.

Here is a very useful result. We cannot prove it using our current ma-
chinery. We will state the result here and prove (a version of) it later.
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THEOREM 13.4 Let Xi,..., X, ~ N(0,1). Let = X. Then 0 is mini-
maz with respect to any well-behaved'! loss function. It is the only'? estimator
with this property.

EXAMPLE 13.6 Suppose that X ~ N(0,1) and that 0 is known to lie in
the interval [—m, m| where 0 < m < 1. The unique, minimaz estimator
under squared error loss is

d(X) = mtanh(mX)

where tanh(z) = (e* —e *)/(e* + e #). It can be shown that this is the Bayes
rule with respect to the prior that puts mass 1/2 at m and mass 1/2 at —m.
Moreover, it can be shown that the risk is not constant but it does satisfy
R(0,6) < r(m, &) for all 8. Hence, Theorem 1 implies it is minimax. The
risk 1s plotted in Figure 2 for m = .5.

13.5 Maximum Likelihood, Minimax and Bayes

There is a sense in which maximum likelihood estimation is minimax. This
is a bit technical; feel free to skip this if you want. Consider squared error
loss which is squared bias plus variance. In parametric models with large
samples, the variance term dominates the bias so the risk of the mle f roughly
equals the variance: R(0,0) ~ Vary(f). As we saw earlier, the variance is
approximately Var() ~ 1/(nl(f)) where I(f) is the Fisher information.

Hence, nR(#,6) ~ 1/1(). For any other estimator ¢, it can be shown that

limlimsup,, ,,, sup nR(¢,d,) > 1/1(6).
e—0 |0—0'| <€

This says that, in a local, large sample sense, the mle is minimax. It can also

be shown that the mle is approximately the Bayes rule.

13.6 Admissibility

Minimax rules and Bayes rules are “good rules” in the sense that they have
small risk. Sometimes it is also useful to characterize bad rules. Specifically,

1 The level sets must be convex and symmetric about the origin.
12Up to sets of measure 0.
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Figure 2. Risk functions for constrained Normal with m=.5
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we say that a decision rule § is inadmissible if there exists another rule ¢’
such that

R(6, 8"
R(6,5")

R(#,0) for all & and

<
< R(0,6) for at least one 6.

EXAMPLE 13.7 Let X ~ N(0,1) and consider estimating 6 with squared
error loss. Let 6(X) = 3. We will show that § is admissible. Suppose
not. Then there exists a different rule 0" with smaller risk. In particular,
R(3,8") < R(3,6) = 0. Hence, 0 = R(3,0") = [(8'(z) — 3)%f(x; 3)dz. Thus,
§'(x) = 3. So there is no rule that beats §. Even though ¢ is admissible it is
clearly a bad decision rule.

A prior density has full support if for every 6 and every e > 0, [{*< 7 (0)d6 >

0.

THEOREM 13.5 (Bayes’ rules are admissible.) Suppose that © C R
and that R(6,0) is a continuous function of 6 for every 6. Let m be a prior
density with full support and let 6™ be the Bayes’ rule. If the Bayes risk is
finite then 0™ is admissible.

PROOQF. Suppose 6™ is inadmissible. Then there exists a better rule ¢
such that R(#,9) < R(0,6™) for all § and R(fy,d) < R(6p,0™) for some 6.
Let v = R(fy,6™) — R(6p,d) > 0. Since R is continuous, there is an € > 0
such that R(,6™) — R(6,6) > v/2 for all 6 € (6y — €,60y + €). Now,

r(m, 67) — r(m,8) = / R(0,6™)7(0)do — / R(0,6)7(6)d0
- / [R(6,67) — R(6,8)] 7 (6)d6

v

00+6

| 1R0,67) - RO, 6) 7(6)do
v 00+€

-~ 5 boc 7T(9)d0

> 0.

This implies that 6™ does not minimize r(m,d) which contradicts the fact
that 6™ is the Bayes rule.

THEOREM 13.6 Let Xy,..., X, ~ N(u,0?). Under squared error loss,
X is admissible.
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The proof of the last theorem is quite technical and is omitted. But the
idea is as follows. The posterior mean is admissible for any strictly positive
prior. Take the prior to be N(a,b?). When b* is very large, the posterior
mean is approximately equal to X.

How are minimaxity and admissibility linked? In general, a rule may
be one, both or neither. But here are some facts linking admissibility and
minimaxity.

THEOREM 13.7 Suppose that § has constant risk and is admissible. Then
it 1S Minimaz.

PROOF. The risk is R(d,9) = ¢ for some c. If § were not minimax then
there exists a rule ¢’ such that

R(6,4") < sup R(6,d") < sup R(,0) = c.
9 0

This would imply that ¢ is inadmissible.

Now we can prove Theorem 13.4, at least for squared error loss, which
says that the sample mean is admissible. This follows from the previous
theorem and 13.5.

Although minimax rules are not guaranteed to be admissible they are
“close to admissible.” Say that ¢ is badly inadmissible if there exists a rule
¢" and an € > 0 such that R(f,¢') < R(#,9) — ¢ for all 6.

THEOREM 13.8 If ¢ is minimazx then it is not badly inadmassible.

13.7 Stein’s Paradox

Suppose that X ~ N(6,1) and consider estimating # with squared error
loss. We know that §(X) = X is admissible. Now consider estimating
two, unrelated quantities # = (6;,6s) and suppose that X; ~ N(f;,1) and
X, ~ N(6,1) independently, with loss L(0,a) = >5_,(0; — a;)>. Let X =
(X1, X32). Not surprisingly, 6(X) = X is again admissible. Now consider the
generalization to £ normal means. Let 0 = (61,...,0;), X = (X1,..., Xk)
with X; ~ N(6;,1) (independent) and loss L(6,a) = Z?ZI(O]- — a;)?. Stein
proved that if £ > 3 then 0(X) = X is inadmissible. It can be shown that
the following rule has smaller risk everywhere:

k—2\"
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where (2)* = max{z,0}. This is a startling, deep fact. Note that the estima-
tor essentially shrinks these values towards each other. The message is that,
when estimating many parameters, there is great value in “shrinking” the
estimates. Surprisingly, this observation plays an important role in modern
nonparametric function estimation.

143



