12 Linear Regression

Consider data (X1,Y7),...,(X,,Y,). Our goal is to study the relationship
between the response Y and the covariate X. Sometimes X is called a feature
or a predictor. One way to study the relationship between X and Y is to
estimate the regression function s(z) = E(Y|X = z). A related problem is
prediction in which we try to predict a new Y based on its covariate value
X. When Y € {0, 1}, prediction is called classification.

12.1 Introduction to Linear Regression

We will begin with the special case called linear regression where we assume
that
s(z) =E(Y|X =x) = By + fiz.

Since we are interested in the mean of Y given x, we shall now treat =4, ..., z,
as fixed numbers. Let ¢, = Y; — s(z;). Then,

Yi =60+ Bizi + €

where €, ..., €, are independent and E(e;) = 0.
Given estimates [y and [3; define the fitted line by

5(z) = Bo + Buz.

The predicted values or fitted values are Y; = 3(z;). The residuals are defined
to be R L
ri=Y, = Y=Y, —[Bo + Bizi].

Let @ = ¥, 72 be the sum of the squared residuals. The least squares es-
timates are the values By and (; that minimize (). We can find these by
solving

R _, 99 _
B | o
The solution is
D T e .

124



EXAMPLE 12.1 (The 2001 Presidential Election.) Figure 12.1 shows
the plot of votes for Buchanan (Y) versus votes for Bush (X) in Florida. The
least squares estimates (omitting Palm Beach County) and the standard er-
rors are

~

By = 66.0991 se(By) = 17.2926

~

B = 00.0035 se(B;) = 0.0002
so the prediction line is
Buchanon = 66.0991 + .0035 Bush.

(We will see shortly how to compute the standard errors.) I also plotted
the residuals. Linear regression works well when the residuals behave like
random normal numbers. Based on the residual plot, this is not the case in
this example. I repeated the analysis replacing votes with log(votes) giving

Bo = —2.3298 se(By) = .3529
B = 0.730300 se(B;) = 0.0358.

This gives the fit
log(Buchanon) = —2.3298 + .7303 log(Bush).

The residuals look much healthier.

Later, we shall address two interesting questions: (1) how do we see if
Palm Beach County has a statistically plausible outcome? (2) how do we do
this problem nonparametrically?

12.2 Least Squares and Maximum Likelihood

The linear regression model is
Yi= 0o+ bz + &

where ¢; are independent and F(¢;) = 0. Let’s now make the stronger as-
sumption that ¢; ~ N(0,02). In other words, we are assuming that

Y;NN(/Li’O-iz)
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Figure 12.1. Voting Data for Election 2000.
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where p; = By + fizi. Let f(yi|xi; Bo, f1,0) denote this Normal density. The
likelihood function is

L(Bo, f1,0) = [ f(Wilws; Bo, B, 0) o o "% exp {—% Sy - Ni)Q}

and the log-likelihood is

YilYi — (Bo + Bry)]?

202 ’
To find the mle of (8o, 81) we maximize £(f5y, f1,0) which is the same is
minimizing 3,[V; — (8o + Biz;)]?. This gives the least squares estimates.
Therefore, under this model, the least squares method and the maximum
likelihood method are identical. We can also maximize ¢(8,, 1, 0) over o.

This yields
~ 1 9
=7
ney

where r; = Y;— (By+ f1;) is the i residual. Some people prefer an unbiased
estimator which is
Z r

n
E(ﬁOa /615 0) = _5 logo- -

n—2

12.3 Standard Errors of the Least Squares Estimators

The estimator ,31 can be written as

57 _ iz —z)Yi-Y)  Eiwi—
e T s M
where
o (LL‘Z —_ T)
W= Yl — )%

Note that >, w; = 0. Hence,
E(p) = Z w; E(Y;
Z w;(Bo + Srx:)
= ﬁozwi + B szwz
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= B Z Tiw;
i

i zi(Ti — 7)

Yz — )2

Yi(zi — 7) (2 — T)
Yi(r —7)?

:51

= h
:51-

So Bl is an unbiased estimator of ;. Also,

0.2

Var( Bl Zw2Var ~ —O'QZ’U) _Zz(

T; — T)Q.

Thus Var(8,) — 0if ¥, (z;—)? — co. We shall assume that 3;(2;,—%)* — oo
from now on. Hence,

MSE(f,) = bias® + Variance = Variance — 0

as n — oo and therefore Bl 2, B,. The central limit theorem also applies
and so

Bl ~ N(ﬁla 552)

where
—~2 ) 6-2
Ve = S e

A 1 — «a per cent confidence interval for (; is Bl + 2z, /255(31). Using similar
arguments we can show that E(fy) = 5y and that

~2 2
—~2/3\ 0% 3%
se'(ho) = nyi(zi —7)?
Later we shall also need Cov (BO, Bl) The estimate of this is given by
Cov(fo.Br) = —— "0

For the election data, on the log scale, a 95 per cent confidence interval is
7303 +2(.0358) = [.66, .80]. The fact that the interval excludes 0 is regarded
as evidence that the true slope is not 0.
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12.4 Prediction From Regression

Consider predicting a new outcome Y, given z., before seeing the outcome.
Since we haven’t seen Y, we can think if it as a parameter. Our estimate of
Y, is R L

Y, = Bo + Bz

To compute a confidence interval we need the variance of V.. This is
Var(Y,) = Var(Bo + le*) = Var(Bo) + foar(Bl) + 2x*COU(,§0, Bl)
We previously computed all the terms that go into this formula.

EXAMPLE 12.2 (Election Data Revisited.) On the log-scale, our lin-
ear regression gives the following prediction equation: log(Buchanon) =
—2.3298 + .7303log(Bush). In Palm Beach, Bush had 15295/ votes and
Buchanan had 3467 votes. On the log scale this is 11.93789 and 8.151045.
How likely is this outcome, assuming our regression model is appropriate?
Our prediction for log Buchanan votes -2.3298 + .7303 (11.93789)=6.388441.
Now 8.151045 1is bigger than 6.388441 but is is “significantly” bigger?

We can answer the last question by considering a confidence interval for
Y,. But the usual confidence interval does not work for prediction.

In other words, ¥, & 21/Var(Y,) is not a 95 per cent interval. The reason is
that the quantity we want to estimate, Y, is not a fixed parameter, it is a
random variable.

To understand this point better, let § = 5, + Sz, and let 0 = By + Br..
Thus, Y, = 0 while Y, = 6 +¢. Now, 6 ~ N (0, se?) where

-~

se? = Var(0) = Var(By + Br.).

Note that Var() is the same as Var(Y,). Now, 8421/Var(8) is a 95 per cent
confidence interval for # = B+ 3,2, using the usual argument for a confidence
interval. It is not a valid confidence interval for Y,. To see why, let’s compute

the probability that Y, +21/Var(Y,) contains ;. Let s = \/Var(Y,). Then,

S

— P<_2<w<2>
S
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(et
- r(eron-v(5) <3
:P(M( + %) <2)

+ .95.

The problem is that the quantity of interest Y, is equal to a parameter 6 plus
a random variable. We can fix this by defining

& =Var(V,) +o* =

In practice, we substitute & for o and we denote the resulting quantity by
&n. Now consider the interval Y, £ 2&,,. Then,

A S Y, -V,
P(Y, -2, <Y, <Y, +2) = P<—2< ~ <2>

~ P

2
~
/\/T\/—\
[\
A\
=
=
) %to
_+_
ql\)
[\
N———

= P(-2<N(0,1) <2)=.95.
Of course, a 1 — « interval is given by V. + za/ggn.

EXAMPLE 12.3 (Election Data Again.) In our example, we find that
&, = .093775 and the 95 per cent confidence interval is (6.200,6.578) which
clearly excludes 8.151. Indeed, 8.151 is nearly 20 standard errors from Y..
Going back to the vote scale by exponentiating, the confidence interval is
(493,717) compared to the actual number of votes which is 3467. This is not
a definitive analysis of this problem but hopefully it gives you a flavor for
linear regression.
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12.5 The Regression Fallacy

In the 1880’s Galton noticed that tall men tended to have sons shorter than
themselves and short men tended to have sons taller than themselves. he
called this “regression toward the mean” and this is where the term regression
comes from. This seems to suggest that with each generation, men get closer
and closer to the mean height. Eventually, everyone should be the same
height! The same thing happens in sports; people have a good first year and
then do less well the second year, often called a sophomore jinx.

Let’s take a look at this. I will show you that the conditional mean of Y
given X can be closer to the overall mean without the marginal distribution
of Y becoming more concentrated. Consider the following example from
DeGroot. The scores of students on two exams are as shown in Table 1. For
simplicity we pretend there are only three possible scores.

Test 1

Test 2 30 60 90
1 2 1
90 0o I 271
1 1 1 1
60 5 9 9 |3
2 1 1
30 2 1 g |1
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Note that the marginal distribution of test score Y on exam 2 is the same
as the marginal distribution of test score X on exam 1. So the distribution of
test scores has not become more concentrated on the second exam. Note that
u=E(Y)=E(X)=060. However, E(Y|X = 90) = (2/3)90 + (1/3)60 = 80
and E(Y|X = 30) = (2/3)30 + (1/3)60 = 40. Hence, |E(Y|X = z) — pu| <
|z — p|. The conditional mean is closer to the average than X is but the
distribution is not becoming more concentrated.
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