Practice Test 3 36-325/725

(1a) Construct the Wald test for testing

$$H_0: p = p_0$$
 versus $H_1: p \neq p_0$

where $p_0 \in (0, 1)$.

- (b) Derive an approximate expression for the (asymptotic) power of this test.
- (2) Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ where both μ and σ are unknown. Construct the likelihood ratio test for testing

$$H_0: \sigma = 1$$
 versus $H_1: \sigma \neq 1$.

- (3) Let X_1, \ldots, X_n be i.i.d. observations from a Poisson (λ) distribution. Consider the prior probability density function $f(\lambda) = 1/\sqrt{\lambda}$.
 - (a) Find the posterior distribution for λ .
 - (b) Let $\overline{\lambda} = E(\lambda | X_1, \dots, X_n)$ be the Bayes estimator. Show that

$$\overline{\lambda} = \frac{\sum_{i} X_i + \frac{1}{2}}{n}.$$

- (4) Let X_1, \ldots, X_n be iid with density $f(x; \beta) = \beta e^{-\beta x}$ for x > 0 and $\beta > 0$.
- (a) Find the asymptotic (large sample) likelihood ratio test (LRT) of size α for $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$.
- (b) Find an exact test, that is, a test with size equal to α (no asymptotic approximation).
 - (c) Find the power of the test in part (b).

- (5) Let $X_1, \ldots, X_n \sim F$ and let $\mu = \mathbb{E}_F(X_1)$. We want to test $H_0: \mu = 0$ versus $H_1: \mu \neq 0$.
 - (a) Assume the data are $N(\mu, \sigma^2)$ where σ^2 is known. Find the Wald test.
 - (b) Repeat (a) but now assume that σ^2 is not known.
- (c) Explain how to use the nonparametric bootstrap to construct a Wald test without assuming Normality.
- (d) Explain how to use the parametric bootstrap to construct a Wald test assuming Normality.
- (6) Let θ be a scalar parameter and consider testing H_0 : $\theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Suppose we test this hypothesis by rejecting H_0 when $|U| > z_{\alpha/2}$ where

$$U = \frac{f(\widehat{\theta}) - f(\theta_0)}{\widehat{se}(\widehat{\theta})|f'(\widehat{\theta})|}$$

and f is an aribtrary, smooth, monotone function. Show that asymptotically this is a size α test.

- (7) Consider the following data: X=2 and $Y=(Y_1,Y_2)=(1,5)$ and suppose we want to test the null hypothesis that these two samples are drawn from the same distribution. Let the test statistic be $T=|\overline{X}-\overline{Y}|$. Find the permutation distribution of T. Find the p-value.
 - (8) Let $X_1, ..., X_n \sim N(\theta, 1)$.
- (a) Construct the likelihood ratio test (LRT) of size α for $H_0: \theta = 0$ versus $H_1: \theta \neq 0$.
- (b) Show that the test in (a) is exact in the sense that the size is exactly α for all n.

- (9) True or false.
- (a) The p-value of a test is the type I error.
- (b) The type II error of a test is one minus the probability of falsely rejecting the null hypothesis.
 - (c) The p-value of a test has a Uniform(0,1) distribution.
- (d) The nonparametric bootstrap can be used to construct a likelihood ratio test.
 - (e) The posterior probability that H_1 is true is one minus the p-value.
- (f) When conducting k hypothesis tests, each based on n observations, the Bonferroni adjustment replaces α with α^k .
 - (10) Let $X_1, ..., X_n \sim N(\mu, \sigma^2)$.
 - (a) Find the Jeffreys prior for (μ, σ) .
 - (b) Find the posterior for (μ, σ) .
 - (c) Find the posterior for μ .
 - (11) Chapter 13 exercise 1.
 - (12) Chapter 13 exercise 2.
 - (13) Chapter 13 exercise 3.
 - (14) Chapter 13 exercise 4.
 - (15) Chapter 13 exercise 5.