Solutions to Practice Test 2
(1) For any k:
z|P(X =2x) |2*
0 1—p 0
1 p 1

So E(XF) = (px 1)+ ((1—p) x0) = p, E(X7*) = (p x 1) + ((1—p) x 0) = p,
V(X}f) = E(X?*) — (E(X}))” = p —p* = p(1 - p). Thus,
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Since convergence in quadratic mean implies convergence in probability, we

also have that .
i=1

(2) Let W = X — Y. Then E(W) =68 — 64 = 4 and

— — 42 32 25 1

Hence, rmsd(W) = 1/2 and by the CLT,
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Therefore,

]P(Y>?)=]P(W>0):]P<W_4> _4) :]P’(W_4>—8) ~P(Z> -

(3) By Markov’s inequality

E(X, A
P(| X, >¢€) =P(X, >¢) < ( ):_:__>0
€ € ne
and hence Xni> 0. Now, for any € > 0,
e A )\0

Hence, P(|Y,| > €¢) — 0 and so Y, = 0.

(4a) f(z;p) =p"(1 —p)'~2.

L(p) = Hf(Xi;p) = p5(1 _ p)n—s

where S = ). X;. Hence

{(p) = Slog(p) + (n — S)log(1 — p)

and
S n-—-8

p 1-p

So, ¢'(p) = 0 yields p = S?n. Now

I(p) = -E (82 IOg(;;ff :p)> =K <_§ - (1 :32) N p(11—p)'

(4b) se () = v/p(1 — p)/nand g(p) = €, ¢'(p) = € s0 se () = se (P)|g' (P)|

p(1 —p)/neP. Now z,/2 = 207 = 1.48 so the confidence interval is

e? +1.48\/p(1 — p)/neP.
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Step 1: Xy%,..., X} ~ Bernoulli(p).
Step 2: p* =n"1>"
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(4d) The empirical CDF has ﬁ((]) = " R
-1 1(X; < 0) on 0 and F(1) =
ZTL

1 1(X; <1) on 1. So, F(0) =1—pand F(1) = 1. Thus, the empirical
puts mass 1 — p on 0 and mass F'(1) — F(0) = p on 1. So when we draw X/

from F, it is the same as drawing from Bernoulli(p)

(5a) Let X be the number of plants and let ¥ be the number that flower.
Then X ~ Binomial(n,p) and Y|X = x ~ Binomial(z, ¢). Hence

F@i,0) = £ p) Flsq) = (Z)pm g (y) 20— g,

So
L(p,q) o< p"(1 =p)" "¢ (1 — )",
(5b) The log-likelihood is

L(p,q)xlog(p) + (n — x) log(1 — p) + ylog(q) + (z — y) log(1 — q)
T n—=z
and 6_p = 5 1 7
At Yy Ty
T
Setting these equal to 0 yields
D= X and ¢ = X
n X
Now E(X) =np and E(Y) = EE(Y|X) = E(¢X) = ¢E(X) = gnp so we solve
np = X
ngp = Y



which yields the same estimator as the MLE .
(5¢) The matrix of second derivatives is

_X _ oneX 0
H = P 0(1—:0) v X v
and the Fisher information matrix is

z(p,q)z_E(H):(@ 0 )

(5d) With ¢(p, q¢) = pq we have

. So
se (1) = VVITIV = 4 [2L (1 - pg).

The confidence interval is

53+ 218 = pg+1.28(/2L (1 — 5g).
n

(6) For any € > 0,

P(| X, >€)=P(X}>€)< —5t- =21
sznLO.

(7) Proof by contradiction. Assume X, — X for some X. Then X, ~ X.
Let F,, be the cDF of X,, and let Z ~ N(0,1). Then, for every c,

RO =P, g =p (0 < L) _p (7O Lpz -5




That is, F,,(¢) = G(c) where G(c) = 1/2 for all ¢. But G is not a CDF which
contradicts the fact that X,, converges in distribution.

(8) We’ve done this before.

(9) Suppose that X, X et F, denote the cdf of X,, and let F' denote
the cdf of X. Every non-integer x is a point of continuity of F. So, for every
integer k, I, (k 4+ ¢€) — F(k +¢€) for any 0 < e < 1. Now,

P(X,=k) = Fyk+e¢)—F,(k—c¢)
— Fk+e¢)— F(k—e¢)
- P(X =k).

Now suppose that P(X,, = k) — P(X = k). Let = be a point of continuity
of F'. Then z is not an integer, so x = k + € for some integer k£ and some
0<e<l.

Fu(z) =P(X,<2)=) P(X,=j)— Y P(X=j)=P(X <k)=P(X <z)=F(z).
Thus, X,, % X.
(10) p(z) = 0 for all z so p is not a probability function. But X,, ~ 0.

(11) The plug-in estimator is
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Step 1: Sample X7, ..., X} ~ ﬁn
Step 2. Compute ¥* (X7, ..., X}).

n

Step 3. Repeat 1 and 2 B times to get: q/ﬁ\f, cees J*B.



Step 4:

7j=1
(12) Note that
0 <0
Flz)=¢ 1—-p 0<z<1
1 z>1
and
R 0 <0
F(z) = 1-p 0<z<1
r>1

where p=n=1>"
.—1 X;. Therefore,

max |F(z) — F(z)| = |1 - p) — (1= )| = [p — p|—0.

T

(13) Let p = (p1,-..,pk). The likelihood is
k
X.
L(p) o Hpj !
7j=1
and the log-likelihood is
k
l(p) = ZXj log p;.
Jj=1

To maximize this we need to take into account the constraint that 25:1 pj =
1 so we use the method of Lagrange multipliers. We maximize

k k
A(p) = ZXj logp; — )\(ij —1).
i=1 i=1



Taking

0A(p) _
8}7]'
gives
X
pj = DY

Now, the constraint implies that

n k
ZZ/’\ _ Zj:l Xj
J
Jj=1 A

hence A = n and hence
X
pj = o
To compute the Fisher information matrix, we ned to remember that
there are only k£ — 1 free parameters so the matix is (k — 1) x (kK — 1). Keep

in mmind that p, =1 —p; —py —--- — pr_1. Hence, for j=1,..., k-1,
dlog f(X;p) _ X; X
Op; pj Dk
and hence
Plogf(X;p) _ X; Xy
op? p; DR
and

0log f(X5p) _ _Xi

Op;0p, i

The Fisher information matrix is

1 1 1
- + — — -
p1 Pk Pk Pk
17 1y T
Pk P2 Pk Pk
n .
1 1 1 1
Pk D Pk—1 + D



