Solutions to Practice Test 2

(1) For any k:

$$\begin{array}{c|cc}
x & \mathbb{P}(X=x) & x^k \\
\hline
0 & 1-p & 0 \\
1 & p & 1
\end{array}$$

So $\mathbb{E}(X_i^k) = (p \times 1) + ((1-p) \times 0) = p$, $\mathbb{E}(X_i^{2k}) = (p \times 1) + ((1-p) \times 0) = p$, $\mathbb{V}(X_i^k) = \mathbb{E}(X_i^{2k}) - (\mathbb{E}(X_i^k))^2 = p - p^2 = p(1-p)$. Thus,

$$\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\right) = \mathbb{E}(X_{i}^{k}) = p$$

and

$$\mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\right) = \frac{\mathbb{V}(X_{i}^{k})}{n} = \frac{p(1-p)}{n}.$$

Since $\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\right)=p$ and $\mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\right)\to0$ we have that $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\stackrel{\mathrm{qm}}{\longrightarrow}p$.

Since convergence in quadratic mean implies convergence in probability, we also have that

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} p.$$

(2) Let $W = \overline{X} - \overline{Y}$. Then $\mathbb{E}(W) = 68 - 64 = 4$ and

$$\mathbb{V}(W) = \mathbb{V}(\overline{X}) + \mathbb{V}(\overline{Y}) = \frac{4^2}{100} + \frac{3^2}{100} = \frac{25}{100} = \frac{1}{4}.$$

Hence, rmsd(W) = 1/2 and by the CLT,

$$W \approx N\left(4, \frac{1}{4}\right).$$

Therefore,

$$\mathbb{P}(\overline{X}>\overline{Y})=\mathbb{P}(W>0)=\mathbb{P}\left(\frac{W-4}{\frac{1}{2}}>\frac{-4}{\frac{1}{2}}\right)=\mathbb{P}\left(\frac{W-4}{\frac{1}{2}}>-8\right)\approx\mathbb{P}(Z>-8)\approx1.$$

(3) By Markov's inequality

$$\mathbb{P}(|X_n| > \epsilon) = \mathbb{P}(X_n > \epsilon) \le \frac{\mathbb{E}(X_n)}{\epsilon} = \frac{\lambda_n}{\epsilon} = \frac{1}{n\epsilon} \to 0$$

and hence $X_n \xrightarrow{P} 0$. Now, for any $\epsilon > 0$,

$$\mathbb{P}(|Y_n| \le \epsilon) \ge \mathbb{P}(Y_n = 0) = \mathbb{P}(X_n = 0) = \frac{e^{-\lambda_n} \lambda_n^0}{0!} = e^{-1/n} \to 1.$$

Hence, $\mathbb{P}(|Y_n| > \epsilon) \to 0$ and so $Y_n \xrightarrow{P} 0$.

(4a)
$$f(x; p) = p^x (1-p)^{1-x}$$
.

$$\mathcal{L}(p) = \prod_{i} f(X_{i}; p) = p^{S} (1 - p)^{n - S}$$

where $S = \sum_{i} X_{i}$. Hence

$$\ell(p) = S\log(p) + (n-S)\log(1-p)$$

and

$$\ell'(p) = \frac{S}{p} - \frac{n-S}{1-p}.$$

So, $\ell'(\widehat{p}) = 0$ yields $\widehat{p} = S?n$. Now

$$I(p) = -\mathbb{E}\left(\frac{\partial^2 \log f(X:p)}{\partial p^2}\right) = -\mathbb{E}\left(-\frac{X}{p^2} - \frac{1-X}{(1-p)^2}\right) = \frac{1}{p(1-p)}.$$

(4b) se $(\widehat{p}) = \sqrt{p(1-p)/n}$ and $g(p) = e^p$, $g'(p) = e^p$ so se $(\widehat{\psi}) = \text{se }(\widehat{p})|g'(\widehat{p})| = \sqrt{p(1-p)/n}e^p$. Now $z_{\alpha/2} = z_{.07} = 1.48$ so the confidence interval is

$$e^{\widehat{p}} \pm 1.48\sqrt{\widehat{p}(1-\widehat{p})/n}e^{\widehat{p}}.$$

Step 1: $X_1 *, \dots, X_n^* \sim \text{Bernoulli}(\widehat{p})$. Step 2: $\widehat{p}^* = n^{-1} \sum^n$

Step 2:
$$\hat{p}^* = n^{-1} \sum_{n=1}^{n}$$

$$_{i=1}X_{i}^{*}$$

 $\begin{array}{ll} \text{Step 3: Repeat ste} & \underbrace{\frac{i=1}{p_s} X_i^*.}_{j=1} \\ \text{Step 4: se} & \underbrace{\frac{i=1}{p_s} \sum_{j=1}^{p_s} \frac{1}{p_s} \sum_{j=1}^{p_s} \frac{1}{p_s} \sum_{j=1}^{p_s} p_j^*.}_{} \end{array}$

(4d) The empirical CDF has
$$\widehat{F}(0) = \sum_{i=1}^{n} I(X_i \leq 0)$$
 on 0 and $\widehat{F}(1) = \sum_{i=1}^{n} I(X_i \leq 0)$

 $I(X_i \le 1)$ on 1. So, $\widehat{F}(0) = 1 - \widehat{p}$ and $\widehat{F}(1) = 1$. Thus, the empirical puts mass $1 - \widehat{p}$ on 0 and mass $\widehat{F}(1) - \widehat{F}(0) = \widehat{p}$ on 1. So when we draw X_i^* from \widehat{F} , it is the same as drawing from Bernoulli(\widehat{p})

(5a) Let X be the number of plants and let Y be the number that flower. Then $X \sim \text{Binomial}(n, p)$ and $Y|X = x \sim \text{Binomial}(x, q)$. Hence

$$f(x, y; q) = f(x; p) f(y|x; q) = \binom{n}{x} p^x (1-p)^{n-x} \binom{x}{y} q^y (1-q)^{x-y}.$$

So

and

$$\mathcal{L}(p,q) \propto p^x (1-p)^{n-x} q^y (1-q)^{x-y}.$$

(5b) The log-likelihood is

$$\ell(p,q)x\log(p) + (n-x)\log(1-p) + y\log(q) + (x-y)\log(1-q)$$

$$\frac{\partial p}{\partial p} = \frac{x}{p} - \frac{n-x}{1-p}$$

$$\frac{\partial \ell}{\partial a} = \frac{y}{a} - \frac{x-y}{1-a}.$$

Setting these equal to 0 yields

$$\widehat{p} = \frac{X}{n}$$
 and $\widehat{q} = \frac{Y}{X}$.

Now $\mathbb{E}(X) = np$ and $\mathbb{E}(Y) = \mathbb{E}\mathbb{E}(Y|X) = \mathbb{E}(qX) = q\mathbb{E}(X) = qnp$ so we solve

$$n\widehat{p} = X$$

$$n\widehat{q}\widehat{p} = Y$$

which yields the same estimator as the MLE.

(5c) The matrix of second derivatives is

$$H = \begin{pmatrix} -\frac{X}{p^2} - \frac{n-X}{(1-p)^2} & 0\\ 0 & -\frac{Y}{q^2} - \frac{X-Y}{(1-q)^2} \end{pmatrix}$$

and the Fisher information matrix is

$$I(p,q) = -\mathbb{E}(H) = \begin{pmatrix} \frac{n}{p(1-p)} & 0\\ 0 & \frac{np}{q(1-q)} \end{pmatrix}$$

(5d) With g(p,q) = pq we have

$$\nabla g = \left(\begin{array}{c} q \\ p \end{array}\right)$$

. So

se
$$(\psi) = \sqrt{\nabla^T I^{-1} \nabla} = \sqrt{\frac{pq}{n} (1 - pq)}.$$

The confidence interval is

$$\widehat{p}\widehat{q} \pm z_{.1}\widehat{\mathsf{se}} = \widehat{p}\widehat{q} \pm 1.28\sqrt{\frac{\widehat{p}\widehat{q}}{n}} (1 - \widehat{p}\widehat{q}).$$

(6) For any $\epsilon > 0$,

$$P(|X_n| > \epsilon) = P(X_n^2 > \epsilon^2) \le \frac{\mathbb{E}(X_n^2)}{\epsilon^2} = \frac{\frac{1}{n} + \frac{1}{n^2}}{\epsilon^2} \to 0$$

so $X_n \xrightarrow{P} 0$.

(7) Proof by contradiction. Assume $X_n \xrightarrow{P} X$ for some X. Then $X_n \rightsquigarrow X$. Let F_n be the CDF of X_n and let $Z \sim N(0,1)$. Then, for every c,

$$F_n(c) = \mathbb{P}(X_n \le c) = \mathbb{P}\left(\frac{X_n - (1/n)}{\sqrt{n}} \le -\frac{(1/n)}{\sqrt{n}}\right) = \mathbb{P}\left(Z \le -\frac{(1/n)}{\sqrt{n}}\right) \to \mathbb{P}\left(Z \le 0\right) = \frac{1}{2}.$$

That is, $F_n(c) \to G(c)$ where G(c) = 1/2 for all c. But G is not a CDF which contradicts the fact that X_n converges in distribution.

- (8) We've done this before.
- (9) Suppose that $X_n \stackrel{d}{\to} X$. Let F_n denote the cdf of X_n and let F denote the cdf of X. Every non-integer x is a point of continuity of F. So, for every integer k, $F_n(k+\epsilon) \to F(k+\epsilon)$ for any $0 < \epsilon < 1$. Now,

$$P(X_n = k) = F_n(k + \epsilon) - F_n(k - \epsilon)$$

$$\to F(k + \epsilon) - F(k - \epsilon)$$

$$= P(X = k).$$

Now suppose that $P(X_n = k) \to P(X = k)$. Let x be a point of continuity of F. Then x is not an integer, so $x = k + \epsilon$ for some integer k and some $0 < \epsilon < 1$.

$$F_n(x) = P(X_n \le x) = \sum_{j=1}^k P(X_n = j) \to \sum_{j=1}^k P(X = j) = P(X \le k) = P(X \le x) = F(x).$$

Thus, $X_n \stackrel{d}{\to} X$.

- (10) p(x) = 0 for all x so p is not a probability function. But $X_n \leadsto 0$.
- (11) The plug-in estimator is

$$\widehat{\psi} = \frac{\left(\frac{1}{n}\sum_{i=1}^{n} \frac{1}{n}\sum_{i=1}^{n} \frac{1}{N} \sum_{i=1}^{n} X_{i}^{4}\right)}{\sum_{i=1}^{n} X_{i}^{3}}.$$

Step 1: Sample $X_1^*, \ldots, X_n^* \sim \widehat{F}_n$.

Step 2. Compute $\widehat{\psi}^*(X_1^*,\ldots,X_n^*)$.

Step 3. Repeat 1 and 2 B times to get: $\widehat{\psi}_1^*, \dots, \widehat{\psi}_B^*$.

Step 4:

$$\widehat{\text{se}} = \sqrt{\frac{1}{B} \sum_{j=1}^{B} (\widehat{\psi}_j - \overline{\psi}^*)^2}.$$

(12) Note that

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x > 1 \end{cases}$$

and

$$\widehat{F}(x) = \begin{cases} 0 & x < 0 \\ 1 - \widehat{p} & 0 \le x < 1 \\ 1 & x > 1 \end{cases}$$

where $\widehat{p} = n^{-1} \sum_{i=1}^{n} X_i$. Therefore,

$$\max_{x} |\widehat{F}(x) - F(x)| = |(1-p) - (1-\widehat{p})| = |\widehat{p} - p| \xrightarrow{P} 0.$$

(13) Let $p = (p_1, \ldots, p_k)$. The likelihood is

$$\mathcal{L}(p) \propto \prod_{j=1}^k p_j^{X_j}$$

and the log-likelihood is

$$\ell(p) = \sum_{j=1}^{k} X_j \log p_j.$$

To maximize this we need to take into account the constraint that $\sum_{j=1}^{k} p_j = 1$ so we use the method of Lagrange multipliers. We maximize

$$A(p) = \sum_{j=1}^{k} X_{j} \log p_{j} - \lambda (\sum_{j=1}^{k} p_{j} - 1).$$

Taking

$$\frac{\partial A(p)}{\partial p_j} = 0$$

gives

$$\widehat{p}_j = \frac{X_j}{\lambda}.$$

Now, the constraint implies that

$$\sum_{j=1}^{n} \widehat{p}_j = \frac{\sum_{j=1}^{k} X_j}{\lambda}$$

hence $\lambda = n$ and hence

$$\widehat{p}_j = \frac{X_j}{n}.$$

To compute the Fisher information matrix, we ned to remember that there are only k-1 free parameters so the matrix is $(k-1) \times (k-1)$. Keep in mmind that $p_k = 1 - p_1 - p_2 - \cdots - p_{k-1}$. Hence, for $j = 1, \ldots, k-1$,

$$\frac{\partial \log f(X; p)}{\partial p_j} = \frac{X_j}{p_j} - \frac{X_k}{p_k}$$

and hence

$$\frac{\partial^2 \log f(X; p)}{\partial p_j^2} = -\frac{X_j}{p_j^2} - \frac{X_k}{p_k^2}$$

and

$$\frac{\partial^2 \log f(X; p)}{\partial p_j \partial p_r} = -\frac{X_k}{p_k^2}.$$

The Fisher information matrix is

$$n \begin{pmatrix} \frac{1}{p_1} + \frac{1}{p_k} & \frac{1}{p_k} & \cdots & \frac{1}{p_k} \\ \frac{1}{p_k} & \frac{1}{p_2} + \frac{1}{p_k} & \cdots & \frac{1}{p_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{p_k} & \frac{1}{p_k} & \cdots & \frac{1}{p_{k-1}} + \frac{1}{p_k} \end{pmatrix}.$$