Homework 5: Partial Solutions

Chapter 8, Problem 1. Y = nﬁn(x) ~ Binomial(n,p) wherep = P(X <

) = F(z). SoE(F(z)) = E(Y/n) = F(z) and V(F(z)) = n 2V(Y) =

p(1 —p)/n = F(z)(1 — F(x))/n. The MSE isbias® +V = V = F(z)(1 —

(z))/n. Hence mse — 0 which impliesthat F'(z)-" F(z) which implies that
()= (2).
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Chapter 8, Problem 2. The quantity of interestisd =p — ¢ = [ zdF;(z) —

J zdF5(z) and the plug- inestimatoriss = fxdFl fxsz =n"tY . Xi—

m~'3".Y; = p — ¢. The variance of the estimator is V(8) = V(hatp — ) =

V(hatp) + V(@) = p(1 — p)/n + q(1 — ¢)/m and the estimated standard error is
o \/p(l -p)  d1-9)
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Since z,/2 = 2.1/2 = 205 = 1.64, an approximate 90 per cent interval is
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Chapter 8, Problem 3. We can write

where Y; ~ Bernoulli(p) with E(Y;) = p = F(z) and V(Y;) = p(1 —p) =
F(z)(1 — F(z)). Hence,




and hence bias = 0.
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= P(max{Xy,...,X,} <0)
= [[Px: <o)
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= F(0)"

The density istherefore
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and so
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8. Recdll that E(X;) = 0/2, V(X;) = 62/12. So

Ey(2X) = 2Ey(X) = Qg =0

and hence bias = 0. Now
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2X = 4 X = — = — = —
Vo(2X) = 4V, (X) n  12n  3n
Since this estimator is unbiased,

2
mse = Vy(0) = 3

9. p=E(X;) = 1/2 and 0® = V(X;) = 1/12. By the CLT,

@:m@—%) - N(0,1).

Now Y = g¢(X) where g(s) = s2. And ¢'(s) = 2s and ¢'(n) = ¢'(1/2)
2(1/2) = 1. From the delta method,
\/ﬁ(Y - g(u)) — \/m (Y _ %) ~ N(O, 1).
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10. Y, = g(X1, X,) where g(s1, s2) = s1/s». By the central limit theorem,

(R ) =
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Therefore,
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