Homework 8: Partial Solutions

Chapter 10, Problem 1. E(X) = o8 and E(X?) = V(X) + (E(X))? =

af? + (a3)? and hence we solve

which gives

where $% =37 (X, — X)?/n.

Chapter 10, Problem 2. E(X) = (a+b)/2and E(X?) = (b—a)?/12+ ((a+
b)/2)? = (b* + ba + a?)/3 and hence we solve
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Let X(1y = min{X;,..., X, } and X,y = max{X;,..., X,,}. The likelihood is

1 \n .
_ (m) ifa< X(l), X(n) <b
£la,b) { 0 otherwise.

This is maximized by
a= X(l), 52 X(n).
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Now 7 = [zdF(z) = E(X) = (a+b)/2. Themleis7 = (a + b)/2 =
(X + X@)/2.



The nonparametric plug-in estimatoris7 = n~' >, X;. The MSE is MSE(7) =
bias> + V= 0+ (b—a)?/(12n) = (b—a)?/(12n). With b = 3,a = 1,n = 10
this is is .0333. By simulation, the mle has MSE about .015, substantially smaller
than the nonparametric plug-in.

Chapter 10, Problem 3. P(X < 7) = P(Z < (1 — u)/o) = @((7 —
w)/o) = .95. Solving for 7 we get 7 = p + o®1(.05) = g(p, 7). The mle is
F=7+501(.05) where i=n"t3"  X;and 0 = n~t 3" (X; — 1) The
gradient of ¢

V9= ( 5 (05) ) '

The asymptotic standard error of 7 is

o — \/(vg)Tf—l(vg) o o1 (.05)?

= —4/1
n n + 2

The estimates standard error is
N o [. ®71(.05)2
se = ——1/1 _—.
Vn * 2
An approximate 1 — « confidence interval is

T+ Za/QS/é .

Chapter 10, Problem 4. The mle is § = X(n), the maximum data point. Note
that 5§ #. Hence,

P(0—6>¢) = PO<0—e¢
= ]P(X1<9—€)n
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asn — oo.

Chapter 10, Problem 5. E(X) = X so the method of moments estima-
tor is A = ntY" X;. The likelihood is AX:Xie=*, the log-likelihood is
L(A) = >, Xilog A — nA. The mle is obtained by setting ¢'(\) = 0 yielding
X=n""3" X;. Now, f(z; ) = A%e™ 50
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Thus,

Chapter 10, Problem 6. (@) v = P(Y1 = 1) =P(X; > 0) = P(X; — 0 >
—0) =P(Z > —0) = 1-P(Z < —0) = 1—®(—0). Themleis¢ = 1—d(—0) =
1—®(—X).

(b) Let g(f) =1 — &(—0) = ®(0). Then, ¢'(#) = ¢(6). The estimated stan-
dard error of ¢ is & = s8 (8)|¢'(8)| = ¢(8)//n = #(X)/+/n. An approximate
95 per cent confidence interval is
$(X)
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(c) ¥ has mean E(Y1) = v. Consistency follows from the weak law of large

numbers.
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(d) Note that Y; ~ Bernoulli(¢) so V(Y1) = ¢(1—%)and V() = V(Y1) /n =
¥(1 — 1) /n. The ARE is

YL —vy) _ 2(0)(1 - 2())

O ¢(0)
(e) By the law of large numbers, X converges in probability to E(X;) = u. So

~ J—

1 =1— ®(—X) converges in probability to 1 — ®(—u) = ®(u). The true value
ofpis P(X > 0) =1— P(X <0) =1— Fx(0). For an arbitrary distribution
Fx, we have 1 — Fi (0) # ®(u) so the mle is inconsistent. On the other hand, 1
is still consistent.

Chapter 10, Problem 7. (a) % = p; — .
(b) The likelihood is

L(p1,p2) = p7 ' (1 — p)™ X po (1 — po)™ %2,

The matrix H of second derivatives is
X 12X 0 ]

i (1—p1)?

H= 0 X 1—X»

3 (1-p2)?
Since E(X;) = ny1p; and E(Xs) = nape, the Fisher information matrix is
Pl(?ipl) 0
I(p17p2) :E(_H) = 0 n2 .
p2(1—p2)

(©) ¥ = g(p1,p2) = p1 — p2 and the gradient of g is

wa-(1).

By the delta method, the estimated standard error of @Z IS

p(l-p)  »(l-m))"
n N2 '

5 = VT 5u,52)(V9) = {

(d) The bootstrap code is:



B <- 10000

tau. boot <- rep(0, B)

for(i in 1:B){
xX1 <- rbinon(1,nl, pl. hat)
XX2 <- rbinonm(1, n2, p2.hat)
tau.boot[i] <- (xx1/nl)-(xx2/n2)
}



