Homework 2 36-401/607 Section B (Wasserman) Due Friday, September 15 at 3:00

1. Suppose that

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad i = 1, \dots, n$$

where $\mathbb{E}[\epsilon_i] = 0$ and $\operatorname{Var}[\epsilon_i] = \sigma^2$. Let $\widehat{\beta}_0$ and $\widehat{\beta}_1$ be the least squares estimates.

- (a) Find $\operatorname{Var}(\widehat{\beta}_0)$ (treating the X_i 's as fixed).
- (b) The observed residuals are defined by $\hat{\epsilon}_i = Y_i (\hat{\beta}_0 + \hat{\beta}_1 X_i)$. Show that $\sum_i \hat{\epsilon}_i = 0$.
- (c) Show that $\sum_{i} \widehat{Y}_{i} \widehat{\epsilon}_{i} = 0$. What is the interpretation of this result?

(d) Suppose you did a regression of the Y_i 's on the observed residuals. (In other words, treat the $\hat{\epsilon}_i$'s as the X_i 's.) What intercept and slope would you get?

2. Suppose that

$$Y_i = \beta_1 X_i + \epsilon_i, \quad i = 1, \dots, n$$

where $\mathbb{E}[\epsilon_i] = 0$ and $\operatorname{Var}[\epsilon_i] = \sigma^2$. In other words, there is no intercept in this model. (This is called regression through the origin.)

- (a) Find the least squares estimate $\hat{\beta}_1$ for this model.
- (b) Show that $\widehat{\beta}_1$ is unbiased.

(c) Suppose you use your estimator from (a) but that, in fact, the true model is $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$. Show that the estimator from part (a) is biased and find an expression for the bias.

- 3. Simulation problem.
 - (a) Generate n = 100 data points as follows. Take $X_i \sim \text{Uniform}(0, 1)$. Then set

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad i = 1, \dots, n$$

where $\beta_0 = 5$, $\beta_1 = 3$ and $\epsilon_i \sim N(0, 1)$. Plot the data. Fit the regression line. Add the fitted line to the plot.

(b) Repeat the experiment in part (a) 1,000 times. You will get a different value of $\hat{\beta}_1$ each time. Denote these by $\hat{\beta}_1^{(1)}, \ldots, \hat{\beta}_1^{(1000)}$. What is the mean of these values? What do you expect the mean to be? Plot a histogram of $\hat{\beta}_1^{(1)}, \ldots, \hat{\beta}_1^{(1000)}$.

(c) Repeat (b) but now take ϵ_i to have a Cauchy distribution. The Cauchy distribution looks like a Normal but it has very thick tails. How does the histogram change?

(d) Now we will investigate what happens when the X_i 's are measured with error. Generate n = 100 data points as follows:

$$X_i \sim \text{Unif}(0, 1)$$
$$W_i = X_i + \delta_i$$
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where $\beta_0 = 5$, $\beta_1 = 3$, $\epsilon_i \sim N(0,1)$ and $\delta_i \sim N(0,2)$. Suppose we only observe $(Y_1, W_1), \ldots, (Y_n, W_n)$. (We don't get to see the X_i 's.) Plot the data. Fit the regression line. Add the fitted line to the plot. Now repeat this 1000 times and find, from the simulation, $\mathbb{E}[\hat{\beta}_1]$. Also, plot a histogram of $\hat{\beta}_1^{(1)}, \ldots, \hat{\beta}_1^{(1000)}$. Based on this experiment, what is the effect of having errors in the X_i 's.

4. Load the dataset airquality using the R command: data(airquality).

(a) Use the summary command to summarize the data. Use the pairs command to plot scatterplots of all pairs of data.

(b) Plot Ozone versus Solar Radiation. (Put Solar on the x-axis.) Describe the relationship between these variables.

(c) Fit a least squares regression line. Add the line to the plot and report the intercept and slope.

(d) Compute the residuals $\hat{\epsilon}_i = Y_i - [\hat{\beta}_0 + \hat{\beta}_1 X_i]$. Plot the residuals versus the X_i 's. Does it appear that the standard linear regression model assumptions hold?