
36-401 Modern Regression HW #3 Solutions
DUE: 9/22/2017

Problem 1 [10 points]
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Problem 2 [40 points total]

(a) (20 pts.)
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As n becomes large the bias approaches 0.

1



Problem 3 [50 points total]

(a) (2 pts.)

dat <- read.csv("bea-2006.csv")
dim(dat)

## [1] 366 7

head(dat)

## MSA pcgmp pop finance prof.tech ict
## 1 Abilene, TX 24490 158700 0.09750 NA 0.01621
## 2 Akron, OH 32890 699300 0.12940 0.05440 NA
## 3 Albany, GA 24270 163000 0.08217 NA 0.00708
## 4 Albany-Schenectady-Troy, NY 36840 850300 0.15780 0.09399 0.04511
## 5 Albuquerque, NM 37660 816000 0.15990 0.09978 0.20500
## 6 Alexandria, LA 25490 152200 0.09152 0.03790 0.01134
## management
## 1 NA
## 2 0.054310
## 3 NA
## 4 NA
## 5 0.006509
## 6 0.015210

The data file has a column for the name of the city, and one column for each of the six statistics.

(b) (2 pts.)

summary(dat[,2:7])

## pcgmp pop finance prof.tech
## Min. :14920 Min. : 54980 Min. :0.03845 Min. :0.01474
## 1st Qu.:26532 1st Qu.: 135625 1st Qu.:0.10403 1st Qu.:0.02932
## Median :31615 Median : 231500 Median :0.14140 Median :0.04212
## Mean :32923 Mean : 680898 Mean :0.15082 Mean :0.04905
## 3rd Qu.:38212 3rd Qu.: 530875 3rd Qu.:0.18122 3rd Qu.:0.05932
## Max. :77860 Max. :18850000 Max. :0.38480 Max. :0.19080
## NA�s :12 NA�s :112
## ict management
## Min. :0.00349 Min. :0.00042
## 1st Qu.:0.01215 1st Qu.:0.00294
## Median :0.02218 Median :0.00651
## Mean :0.03910 Mean :0.00908
## 3rd Qu.:0.04072 3rd Qu.:0.01191
## Max. :0.58600 Max. :0.05431
## NA�s :76 NA�s :157
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(c) (6 pts.)

par(mfrow=c(1,2))
hist(dat$pop, breaks = 100, main = "", xlab = "Population", ylab = "Frequency")
text(max(dat$pop), 20, adj = 0.8, labels = "New York")
points(max(dat$pop),0, col = "red", pch = 19)
hist(log(dat$pop), breaks = 100, main = "", xlab = "log(Population)", ylab = "Frequency")
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Figure 1: Histogram of Populations for 366 U.S. Metropolitan Areas in 2006 (Left: Raw scale. Right: Log
scale)

As seen in Figure 1, the distribution of city (metro area) populations has a highly positive skewness, with the
New York-Northern New Jersey-Long Island area having the highest documented population. Plotting the
distribution on the log scale (right panel of Figure 1) allows for a more informative inspection.
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boxplot(dat$pcgmp, boxwex = 0.7, main = "", ylab = "Per Capita GMP")
text(max(dat$pcgmp), labels = "Bridgeport-Stamford-Norwalk, CT", cex = 0.7, adj = -0.075)
points(max(dat$pcgmp), pch = 19, col = "red")
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Figure 2: Box plot of Per Capita GMP for 366 U.S. Metropolitan Areas in 2006

Similar to population, the distribution of per-capita GMP has a positive skewness. The mean per-capita GMP
over all 366 cities is approximately $33, 000 per person-year, while Bridgeport-Stamford-Norwalk (shown in
red), CT boasts a per-capita GMP of ¥ $78, 000 per person-year, approximately 5 standard deviations above
the mean.
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(d) (6 pts.)

par(mfrow = c(1,2))
with(dat, plot(pop, pcgmp, xlab = "Population", ylab = "Per Capita GMP"))
with(dat, plot(log(pop), pcgmp, xlab = "log(Population)", ylab = "Per Capita GMP"))
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Figure 3: Scatterplot of Per Capita GMP vs. Population for 366 U.S. Metropolitan Areas in 2006 (Left: Raw
scale; Right: Log scale).

Per-capita GMP and population have a positive association. This trend is most apparent on the log scale
(right panel).

(e) (5 pts.)

n <- nrow(dat)
b1 <- with(dat, (n-1)/n * cov(pop,pcgmp) / ((n-1) / n * var(pop)))
b0 <- with(dat, mean(pcgmp) - b1 * mean(pop))
print(list(b0,b1))

## [[1]]
## [1] 31277.57
##
## [[2]]
## [1] 0.002416201

The estimated linear regression parameters are

‚
—0 = 31277.57 and ‚

—1 = 0.002416201.
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(f) (3 pts.)

model <- lm(pcgmp ~ pop, data = dat)
model$coefficients

## (Intercept) pop
## 3.127757e+04 2.416201e-03

The intercept and slope parameters given by lm are
‚
—0 = 31277.57 and ‚

—1 = 0.002416201,

which, as expected, matches what we computed by hand in part (d).

(g) (4 pts.)

with(dat, plot(pop, pcgmp, xlab = "Population", ylab = "Per Capita GMP",
cex = 0.5, log = "x"))

abline(model, lwd = 2, col = "red")
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Figure 4: Scatterplot of Per Capita GMP vs. Population for 366 U.S. Metropolitan Areas in 2006, with linear
regression shown in red.

Figure 4 shows per-capita GMP vs. Population with the least squares regression line plotted in red. Here we
have plotted the x-axis on the log-scale so we can better examine the regression fit, but it is important to
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note that the regression is still on Population, not log(Population). The assumptions of the simple linear
regression do not hold here. In particular, the linear model significantly understimates the the per-capita
GMP for cities with relatively large populations. The fit is somewhat better for small populations.

(h) (4 pts.)

index <- which(dat$MSA == "Pittsburgh, PA")
dat[index,]

## MSA pcgmp pop finance prof.tech ict management
## 262 Pittsburgh, PA 38350 2361000 0.2018 0.0777 0.03434 0.02946

In 2006, the population of Pittsburgh, PA was approximately 2, 361, 000, with a per-capita GMP of $38, 350
per person-year.
fitted(model)[index]

## 262
## 36982.22

residuals(model)[index]

## 262
## 1367.775

The simple linear model predicts a per-capita GMP of ≥ $37, 000 per person-year for Pittsburgh, yielding a
residual of ≥ $1, 370 per person-year.

(i) (2 pts.)

mean(residuals(model)^2)

## [1] 70697145

The empirical MSE of the simple linear regression is approximately 7.07 ◊ 107.

(j) (1 pts.)

residuals(model)[index] ^ 2

## 262
## 1870810

Pittsburgh’s squared residual is 1.87 ◊ 106, which is relatively small when compared to the MSE. Notice that
we need to square the residual in order to make it directly comparable to the MSE.
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(k) (3 pts.)

with(dat, plot(pop, residuals(model), xlab = "Population", ylab = "Residuals",
cex = 0.5, log = "x"))

abline(0,0, lty = 2)
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Figure 5: Linear regression residuals of Per Capita GMP on Population.

If the assumptions of the linear regression held, the residuals would have a symmetric and homoskedastic
scatter about 0. Figure 5 is not compatible with the standard linear regression assumptions. In particular,
most of the residuals are negative at low populations and most of the residuals are positive at populations
above ≥ 1, 000, 000. Furthermore, there are several highly positive outliers which are not well-explained by
the homoskedastic linear model.
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(l) (3 pts.)

plot(dat$pop, residuals(model)^2, xlab = "Population", ylab = "Squared residuals", pch = 19,
cex = 0.95, log = "x", col = addTrans("red", 50), font.lab = 2, xaxt = "n", yaxt = "n")
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Figure 6: Linear regression squared residuals.

If the homoskedastic assumption of the linear model held, then the squared residuals would have an
approximately constant amplitude over all values of population. This assumption is violated by two or
three residuals (Bridgeport-Stamford-Norwalk, CT and San Jose-Sunnyvale-Santa Clara, CA being
the worst), but not too egregiously elsewhere.
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(m) (3 pts.)

Based on this data set, the total value of all goods and services produced for sale in a city in 2006 (per
person) has a highly significant positive correlation with the population of the city. In particular, on the
average, a one person increase in population is associated with a $0.002416201 per person-year increase in
per-capita GMP.

(n) (3 pts.)

predict(model, newdata = data.frame(pop = dat$pop[262] + 1e5))

## 1
## 37223.84

The model predicts a per-capita GMP of approximately $37, 200 per person-year for a city with 100,000 more
people than Pittsburgh, PA.

(o) (3 pts.)

model$coefficients[2] * 1e5

## pop
## 241.6201

If, by a policy intervention, we added 100,000 people to Pittsburgh’s population, the model predicts that the
per-capita GMP would increase by approximately ‚

—1 · 100, 000 ¥ $240 per person-year. Note, however, that
such a prediction assumes there is a causal relationship between population and per-capita GMP.
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