
36-401 Modern Regression HW #4 Solutions
DUE: 9/29/2017

Note: In the body of this document I omit the vast majority of the code I used in Problems 2-4, primarily
because most of it serves the purpose of making the plots prettier and I do not want to confuse those just
beginning to learn R. However, if you are interested, I provide my code in the appendix with eval = FALSE.

Problem 1 [10 points]

In Homework 2 we showed
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At this point you can invoke the fact that a linear combination of Gaussian random variables is also Gaussian
(something you proved in 36-225). Therefore, β̂ follows a Gaussian distribution with mean
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Alternate Solution

Recall from 36-225 that the distribution of a random variable has a one-to-one correspondence with its
moment generating function. Above we showed
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which we recognize as a Gaussian MGF. In particular,
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Problem 2 [20 points]

(a) (6 pts.)
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Figure 1: Residuals vs. predicted MPG for regression on car weight

The residuals are clearly not symmetric about zero for all values of Ŷ , which suggests the linearity assumption
is violated.
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(b) (8 pts.)
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Figure 2: Residuals vs. predicted mpg for regression on log(weight)

Figure 2 shows that applying a log transformation to weight has improved the linear fit. Nevertheless, the
linear assumption is still violated (albeit less egregiously) as the residuals can be seen to be systematically
not centered at zero for all values of Ŷ , e.g. Ŷ ≈ 11, Ŷ ≈ 21. Morever, Figure 2 shows a clear violation of
the homoskedasticity assumption.
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(c) (6 pts.)
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Figure 3: Q-Q plot of mpg vs log(weight) residuals

Figure 3 shows strong evidence against a Gaussian assumption on the noise. In particular, the right tail (the
positive residuals) is much too fat.
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Problem 3 [20 points]

We will use the transformation log(weight) for our predictor but, before we proceed with an analysis, let’s
check the Box-Cox power transformation to see if we should transform mpg as well.

−2 −1 0 1 2

−
60

0
−

55
0

−
50

0

λ

lo
g−

Li
ke

lih
oo

d

 95%

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 4: Box-Cox power transformation for mpg on weight

Figure 4 suggests λ = 0 is a reasonable choice, so we let our response be log(mpg). The residuals of the
regression are shown in Figure 5.

(a) (5 pts.)

transformed.weight <- log(dat$weight)
transformed.mpg <- log(dat$mpg)
model3 <- lm(transformed.mpg ~ transformed.weight)
coefficients(model3)

β̂0 = 11.521907 is an empirical estimate for

E[log(mpg)| log(weight) = 0]

and β̂1 = −1.058268 is an empirical estimate for

E[log(mpg)| log(weight) = x+ 1]− E[log(mpg)| log(weight) = x], x ∈ Support(log(weight)),

i.e., it is an estimate for the slope of E[log(mpg)| log(weight)].
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Figure 5: Residuals vs fitted values for log(mpg) vs log(weight) regression
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(b) (10 pts.)

The hypothesis being tested is:

H0 : β1 = 0
(
log(mpg) and log(weight) have no linear association

)
H1 : β1 6= 0

(
log(mpg) and log(weight) have a non-zero linear association

)
.

We reject H0 when:
|β̂1 − 0|
ŝe(β̂1)

> tn−2(0.025).

The right-hand side is
qt(0.025, df = 396, lower.tail = FALSE)

## [1] 1.965973

and the left-hand side is given by
t <- abs(summary(model3)$coefficients[2,1]) / summary(model3)$coefficients[2,2]
print(t)

## [1] 35.87373

so we reject H0.

The p-value is given by
2 * pt(t, df = 396, lower.tail = FALSE)

## [1] 1.752225e-126

Notice that lm also stores the p-value for this test.
summary(model3)$coefficients[2,4]

## [1] 1.752225e-126
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(c) (5 pts.)

An approximate 90% confidence interval for β1 is(
β̂1 − tn−2(0.05) · ŝe(β̂1), β̂1 + tn−2(0.05) · ŝe(β̂1)

)
.

tmp <- qt(0.05, df = 396, lower.tail = FALSE) * summary(model3)$coefficients[2,2]
L <- summary(model3)$coefficients[2,1] - tmp
U <- summary(model3)$coefficients[2,1] + tmp
print(list(L,U))

## [[1]]
## [1] -1.106905
##
## [[2]]
## [1] -1.009631

C =
(
− 1.106905, −1.009631

)
You can also make the confint do the work for you.
confint(model3, level = 0.9, parm = "transformed.weight")

## 5 % 95 %
## transformed.weight -1.106905 -1.009631
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Sample Data Analysis Practice (50 points)

Introduction

The term abalone is a common name for a broad class of marine snails, ranging from small (fractions of a
millimeter) to potentially very large (∼ 12 inches)1,2. The age of an abalone is determined through a tedious
process of counting the number of rings on its shell through a microscope. In particular, it is believed an
abalone’s age (in years) corresponds to one-and-a-half plus the number of rings on its shell. Because of the
inconvenience associated with counting an abalone’s rings, it would be helpful if age could be approximately
estimated by a more easily obtainable feature. In this anaylsis, we will seek to build a predictive model of
abalone age from height (in mm.).

Exploratory Data Analyis & Initial Modeling

The data set that we use comes from the University of California, Irvine Machine Learning Repository1. This
data set documents the height and number of rings of 4177 abalones observed in Tasmania in 1994. Summary
statistics for each of the two variables are shown in Table 1. The full marginal distribution of each variable
is more clearly shown in Figure 6. The vast majority of the observed abalones fall in the height range of
[0, 0.25 mm.], however, there is a pair of relatively large cases, one in particular measuring 1.13 mm. The
ring count among the observed abalones ranges from one to 29, with a mode of nine.

Table 1: Summary Statistics for Abalone Data Set

Minimum Mean Median Maximum Variance
Height (mm) 0 0.1395 0.14 1.13 0.0017
Rings 1 9.9337 9.00 29.00 10.3953
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Figure 6: Marginal Distributions of Abalone Height and Ring Count

The results of a naive simple linear regression directly modeling abalone ring count vs. height are shown in
Figure 7. The two cases with exceptionally large heights seem to significantly influence the fit. Furthermore,

1https://archive.ics.uci.edu/ml/datasets/Abalone
2https://en.wikipedia.org/wiki/Abalone
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even if we restrict our attention to the non-extreme cases, it does not appear that a linear model will be
suitable on this scale.
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Figure 7: Results of Naive Linear Regression of Abalone Ring Count vs. Height

Modeling and Diagnostics

Given a mere two observations of abalones measuring greater than 0.25 mm. in height were collected in
this data set, we remove these observations and focus on building a predictive model of ring count for the
smaller abalones. We also discard two observations that were recorded with a height of exactly zero since
this is clearly due to limited precision in the measurement instrument. After some preliminary modeling
(omitted here), we also found it best to omit the abalones with the three smallest non-zero heights. While
these three abalones had approximately the same height (0.01, 0.015, and 0.015 mm.), their ring counts were
drastically different (1, 4, and 9, respectively). This suggests there may be a large population variance among
abalones in this height range. This is particulary undesirable because these observations lie at the boundary
of the height range, and thus possess high leverage on the fit. That is, their high variability will significantly
influence β̂1 and se(β̂1).

When modeling the remaining observations on the height interval [0.02,;0.25 mm.] no transformation of
Height yields a more linear trend than the originally observed scale. However, as previously noted in our
EDA, a linear model is likely not a reasonable assumption on this scale. A Box-Cox transformation of the
number of rings yields reasonably healthy residuals; however, modeling on a transformed scale disallows3 us
from doing inference on E[Rings|Height] (which we are specifically instructed to do), so we do not perform
such a transformation4. Therefore, for the purpose of answering our given scientific questions, are final chosen
model will be of the form

R̂ings = β̂0 + β̂1 · Height, Height ∈ [0.02, 0.25 mm.]. (2)

3We cannot back-transform confidence intervals on E[g(Rings)|Height] because g−1
(
E[g(Rings)|Height]

)
6= E[Rings|Height],

in general.
4The diagnostic plots for this model are however provided in the appendix.
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Figure 8: Final model fit and diagnostic plots

12



Inference and Results

The fit and diagnostic plots for the final model are shown in Figure 8. Due to our inability to transform
the ring count, we are left with heteroskedacity in the residuals, which means our confidence interval for
the conditional mean ring count will not have correct empirical coverage. The parameter estimates and
corresponding confidence intervals are shown in Table 2. Since Height = 0 has no scientific interpretation,
β̂0 = 2.7856 is more appropriately regarded as the baseline number of rings for an abalone, after which a 0.01
mm. increase in height is associated with a 0.51 increase to an abalone’s ring count. A t-test for a significant
association between ring count and height yields a p-value less than 2× 10−16 so we can confidently say there
is a significant relationship between the height and number of rings of abalones.

Table 2: Parameter Estimates and 95% Confidence Intervals

Estimate CI.Lower CI.Upper
Intercept 2.7856 2.4925 3.0787
Slope 51.3379 49.3095 53.3663

A 95% confidence interval for the average number of rings for abalones with height at 0.128 mm. is
(9.275917, 9.437726). The heteroskedasticity of the residuals likely makes this interval wider than it could be.
A better approach would be to construct the confidence interval via bootstrapping (36-402). A 99% confidence
interval for the number of rings for a single abalone with height at 0.132 mm. is (4.55298, 14.57137), with
the point estimate 9.562173 mm.

Conclusions and Discussions

The height of an abalone bears significant power in predicting its number of rings, and thus its age. Since
the average ring count of abalones as a function of height (or some transformation of height) is our primary
interest, we were not able to transform the ring count to homoskedastize the residuals, however this relatively
naive model still reveals a very strong association between the two variables of interest. In order to also get
confidence intervals for E[Rings|Height] with correct coverage we recommend applying the Bootstrap (will
learn in 36-402). Furthermore, even though the linear mean fit is not egregious, it could be made better by
allowing for a more flexible model. In particular, a more complex linear model on Height could be used
(covered later in 36-401), or a nonparametric model (covered in 36-402).
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Appendix

# This is a function I found online to adjust the transparancy of colors when plotting
addTrans <- function(color,trans)
{

# This function adds transparancy to a color.
# Define transparancy with an integer between 0 and 255
# 0 being fully transparant and 255 being fully visable
# Works with either color and trans a vector of equal length,
# or one of the two of length 1.

if (length(color)!=length(trans)&!any(c(length(color),length(trans))==1)){
stop("Vector lengths not correct")}

if (length(color)==1 & length(trans)>1) color <- rep(color,length(trans))
if (length(trans)==1 & length(color)>1) trans <- rep(trans,length(color))

num2hex <- function(x)
{

hex <- unlist(strsplit("0123456789ABCDEF",split=""))
return(paste(hex[(x-x%%16)/16+1],hex[x%%16+1],sep=""))

}
rgb <- rbind(col2rgb(color),trans)
res <- paste("#",apply(apply(rgb,2,num2hex),2,paste,collapse=""),sep="")
return(res)

}

Problem 2

(a)

dat <- read.csv("http://www.stat.cmu.edu/~larry/=stat401/auto-mpg.csv")
model <- with(dat, lm(mpg ~ weight))
plot(model, which = 1, col = NA, pch = 19, axes = FALSE,

add.smooth = FALSE, caption = "")
abline(h = seq(-15,15,5), col = "gray75", lty = 2)
abline(v = round(seq(min(fitted(model)), max(fitted(model)), length = 7)),

col = "gray80", lty = 2)
abline(0,0, lty = 2, col = "gray45")
#rug(fitted(model), lwd = 0.2, ticksize = 0.025)
axis(side = 1, at = round(seq(min(fitted(model)), max(fitted(model)),

length = 7)), as.character(round(seq(min(fitted(model)),
max(fitted(model)),
length = 7))),

font = 5)
axis(side = 2, at = seq(-15,15,5), labels = as.character(seq(-15,15,5)),

font = 5)
points(fitted(model), residuals(model), col = addTrans("orange",120),

ch = 19)
points(fitted(model), residuals(model), col = "orange")
panel.smooth(fitted(model), residuals(model), col = "orange",cex = 1,

col.smooth = "seagreen", span = 2/3, iter = 3)
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(b)

model2 <- with(dat, lm(mpg ~ log(weight)))
plot(model2, which = 1, col = NA, pch = 19, axes = FALSE,

add.smooth = FALSE, caption = "")
axis(side = 1, at = round(seq(min(fitted(model2)), max(fitted(model2)),

length = 7)), as.character(round(seq(min(fitted(model2)),
max(fitted(model2)),
length = 7))),

font = 5)
axis(side = 2, at = seq(-15,15,5), labels = as.character(seq(-15,15,5)),

font = 5)
abline(h = seq(-15,15,5), col = "gray75", lty = 2)
abline(v = round(seq(min(fitted(model2)), max(fitted(model2)), length = 7)),

col = "gray80", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(fitted(model2), residuals(model2), col = addTrans("orange",120),

ch = 19)
points(fitted(model2), residuals(model2), col = "orange")
panel.smooth(fitted(model2), residuals(model2), col = "orange",cex = 1,

col.smooth = "seagreen", span = 2/3, iter = 3)

(c)

plot(model2, which = 2, col = addTrans("orange",120), pch = 19, axes = FALSE,
qqline = FALSE, cex.id = 0.5, caption = "")

axis(side = 1, at = seq(-3,3,1), labels = as.character(seq(-3,3,1)), font = 5)
axis(side = 2, at = seq(-3,4,1), labels = as.character(seq(-3,4,1)), font = 5)
qqline(scale(residuals(model2)), col = "seagreen", lty = 3)
secondpts <- qqnorm(scale(residuals(model2)), plot.it = FALSE)
abline(v = seq(-3,3,1), lty = 2, col = "gray80")
abline(h = seq(-3,4,1), lty = 2, col = "gray80")
points(secondpts, col = addTrans("orange",120))
points(secondpts, col = "orange")
qqline(scale(residuals(model2)), col = "seagreen", lty = 3)
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Problem 3

library(MASS)
transformed.weight <- log(dat$weight)
with(dat, boxcox(mpg ~ transformed.weight))
axis(side = 1, at = seq(-2,2,0.5), labels = as.character(seq(-2,2,0.5)))

transformed.mpg <- log(dat$mpg)
model3 <- lm(transformed.mpg ~ transformed.weight)
plot(model3, which = 1, col = NA, pch = 19, axes = FALSE,

add.smooth = FALSE, caption = "")
axis(side = 1, at = signif(seq(min(fitted(model3)), max(fitted(model3)), length = 7),

digits = 2), as.character(signif(seq(min(fitted(model3)),
max(fitted(model3)),
length = 7),

digits = 2)),
font = 5)

axis(side = 2, at = seq(-0.6,0.6,0.3), labels = as.character(seq(-0.6,0.6,0.3)),
font = 5)

abline(h = seq(-0.6,0.6,0.3), col = "gray75", lty = 2)
abline(v = signif(seq(min(fitted(model3)), max(fitted(model3)), length = 7),

digits = 2), col = "gray80", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(fitted(model3), residuals(model3), col = addTrans("orange",120),

pch = 19)
points(fitted(model3), residuals(model3), col = "orange")
panel.smooth(fitted(model3), residuals(model3), col = "orange",cex = 1,

col.smooth = "seagreen", span = 2/3, iter = 3)
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Sample Data Analysis Practice

dat <- read.csv("http://www.stat.cmu.edu/~larry/=stat401/abalone.csv")
library(knitr)
data.summary <- data.frame(Minimum = sapply(X = 1:2, FUN = function(X) min(dat[,X])),

Mean = sapply(X = 1:2, FUN = function(X) mean(dat[,X])),
Median = sapply(X = 1:2, FUN = function(X) median(dat[,X])),
Maximum = sapply(X = 1:2, FUN = function(X) max(dat[,X])),
Variance = sapply(X = 1:2, FUN = function(X) var(dat[,X])))

row.names(data.summary) <- c("Height (mm)", "Rings")
kable(data.summary, row.names = TRUE, digits = 4,

caption = "Summary Statistics for Abalone Data Set")

par(mfrow=c(1,2))
hist(dat$Height, breaks = 75, xaxt = "n", yaxt = "n", main = "", xlab="",

ylab="", col = NA, axes = FALSE, probability = TRUE)
axis(side = 1, at = seq(0,1,0.2), as.character(seq(0,1,0.2)), font = 5)
axis(side = 2, at = seq(0,10,2), as.character(seq(0,10,2)), font = 5)
abline(h = seq(0,10,2), v = seq(0,1,0.2), col = "gray70", lty = 2)
hist(dat$Height, breaks = 75, xaxt = "n", yaxt = "n", main = "", xlab="",

ylab="", col = "orange", axes = FALSE, probability = TRUE, add = TRUE,
border = addTrans("black",150))

dens <- density(dat$Height, bw = 0.02)
lines(x = dens$x, y = dens$y, col = "seagreen", lwd = 3)
mtext(side = 1, text = "Height", font = 3, line = 2.25)
mtext(side = 2, text = "Density", font = 3, line = 2.5)

barplot(c(table(dat$Rings)[1:27],0,table(dat$Rings)[28]), col = NA, xlab = "",
ylab = "", ylim = c(0,700), xaxt = "n", yaxt = "n")

abline(h = seq(0,700,100),col = "gray70", lty = 2)
barplot(c(table(dat$Rings)[1:27],0,table(dat$Rings)[28]), col = "orange",

xlab = "", ylab = "", add = TRUE, ylim = c(0,700), xaxt = "n", yaxt = "n")
mids <- barplot(c(table(dat$Rings)[1:27],0,table(dat$Rings)[28]),

plot = FALSE)
axis(side = 1, at = mids[c(1,seq(5,25,5),29)], labels = c(1,seq(5,25,5),29),

font = 5, tick = FALSE, line = -0.75)
axis(side = 2, at = seq(0,700,100), labels = as.character(seq(0,700,100)),

font = 5)
mtext(side = 1, text = "Rings", font = 3, line = 1.5)
mtext(side = 2, text = "Frequency", font = 3, line = 3)

par(mfrow=c(1,2))
with(dat, plot(Height, Rings, col = addTrans("orange",120), pch = 19,

cex = 0.8, axes = FALSE, xlab="",ylab=""))
axis(side = 1, at = seq(-0.2,1.2,0.2), as.character(seq(-0.2,1.2,0.2)),

ont = 5)
axis(side = 2, at = c(1,seq(5,25,5),29), as.character(c(1,seq(5,25,5),29)),

font = 5)
abline(v = seq(0,1,0.2), h = c(1,seq(5,25,5),29), col = "gray70", lty = 2)
mtext(side = 2, text = "Rings", font = 3, line = 3)
mtext(side = 1, text = "Height", font = 3, line = 3)
with(dat, points(Height, Rings, col = addTrans("orange",120), cex = 0.8,

pch = 19))
with(dat, points(Height, Rings, col = "orange", pch = 1, cex = 0.8))
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model4 <- with(dat, lm(Rings ~ Height))
abline(model4, col = "seagreen", lwd = 2)

plot(model4, which = 1, col = NA, pch = 19, axes = FALSE,
add.smooth = FALSE, font.lab= 3, caption = "")

axis(side = 1, at = round(seq(min(fitted(model4)), max(fitted(model4)), length = 7)),
as.character(round(seq(min(fitted(model4)), max(fitted(model4)), length = 7))),
font = 5)

axis(side = 2, at = seq(-70,30,10), labels = as.character(seq(-70,30,10)),
font = 5)

abline(h = seq(-70,30,10), col = "gray70", lty = 2)
abline(v = round(seq(min(fitted(model4)), max(fitted(model4)), length = 7)),

col = "gray70", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(fitted(model4), residuals(model4), col = addTrans("orange",120), pch = 19,

cex = 0.5)
points(fitted(model4), residuals(model4), col = "orange", cex = 0.5)
panel.smooth(fitted(model4), residuals(model4), col = "orange",cex = 0.5,

col.smooth = "seagreen", span = 2/3, iter = 3)

par(mfrow=c(1,2))
dat[c(which(dat$Height > 0.4 | dat$Height < 0.0184)),] <- NA
dat <- na.omit(dat)
transformed.height <- log(dat$Height)
log.likelihood <- with(dat, boxcox(Rings ~ transformed.height))
lambda.opt <- log.likelihood$x[which.max(log.likelihood$y)]

transformed.rings <- dat$Rings ^ (lambda.opt)
plot(transformed.height, transformed.rings, col = addTrans("orange",120), pch = 19,

cex = 0.8, axes = FALSE, xlab="",ylab="")
axis(side = 1, at = seq(-5,0,1), as.character(seq(-5,0,1)), font = 5)
axis(side = 2, at = seq(0.30,1,0.1), as.character(seq(0.3,1,0.1)), font = 5)
abline(v = seq(-5,0,1), h = seq(0.3,1,0.1), col = "gray70", lty = 2)
mtext(side = 2, text = "Rings transformation", font = 3, line = 3)
mtext(side = 1, text = "Height transformation", font = 3, line = 3)
with(dat, points(transformed.height, transformed.rings, col = addTrans("orange",120),

cex = 0.8, pch = 19))
with(dat, points(transformed.height, transformed.rings, col = "orange", pch = 1,

cex = 0.8))
model4 <- lm(transformed.rings ~ transformed.height)
abline(model4, col = "seagreen", lwd = 2)

layout(matrix(c(1,2,3,3), 2, 2, byrow = T), widths = c(4,4,4))
model5 <- lm(transformed.rings ~ transformed.height)
plot(model5, which = 1, col = NA, pch = 19, axes = FALSE,

add.smooth = FALSE, caption = "", font.lab = 3)
axis(side = 1, at = seq(0.35,0.8,0.05),as.character(seq(0.35,0.8,0.05)),font = 5)
axis(side = 2, at = seq(-0.3,0.2,0.05), labels = as.character(seq(-0.3,0.2,0.05)),

font = 5)
abline(h = seq(-0.3,0.2,0.05), col = "gray75", lty = 2)
abline(v = seq(0.35,0.8,0.05), col = "gray75", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(fitted(model5), residuals(model5), col = addTrans("orange",120), pch = 19)
points(fitted(model5), residuals(model5), col = "orange")
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Figure 9: Log-likelihood of Box-Cox Power Transformation and Fitted Regression using the Optimal Power

panel.smooth(fitted(model5), residuals(model5), col = "orange",cex = 1,
col.smooth = "seagreen", span = 2/3, iter = 3)

plot(transformed.height, residuals(model5),
col = NA, pch = 19, axes = FALSE, xlab = "", ylab = "")

axis(side = 1, at = seq(-4,-1,0.5),as.character( seq(-4,-1,0.5)),font = 5)
axis(side = 2, at = seq(-0.15,0.15,0.05), labels = as.character(seq(-0.15,0.15,0.05)),

font = 5)
abline(h = seq(-0.15,0.15,0.05), col = "gray75", lty = 2)
abline(v = seq(-4,-1,0.5), col = "gray75", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(transformed.height, residuals(model5),

col = addTrans("orange",120), pch = 19)
points(transformed.height, residuals(model5),

col = "orange")
mtext(side = 2, text = "Residuals", font = 3, line = 3, cex = 0.85)
mtext(side = 1, text = "Height transformation", font = 3, line = 3, cex = 0.85)
panel.smooth(transformed.height, residuals(model5),

col = "orange",cex = 1,col.smooth = "seagreen", span = 2/3, iter = 3)

par(mar = c(5,20,4,18) + 0.1)
plot(model5, which = 2, col = addTrans("orange",120), pch = 19, axes = FALSE,

qqline = FALSE, cex.id = 0.75, caption = "", font.lab = 3)
axis(side = 1, at = seq(-8,3,1), labels = as.character(seq(-8,3,1)), font = 5)
axis(side = 2, at = seq(-8,6,1), labels = as.character(seq(-8,6,1)), font = 5)
qqline(scale(residuals(model5)), col = "seagreen", lty = 3)
secondpts <- qqnorm(scale(residuals(model5)), plot.it = FALSE)
abline(v = seq(-5,3,1), lty = 2, col = "gray80")
abline(h = seq(-8,6,1), lty = 2, col = "gray80")
points(secondpts, col = addTrans("orange",120))
points(secondpts, col = "orange")
qqline(scale(residuals(model5)), col = "seagreen", lty = 3)
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dat[c(which(dat$Height > 0.4 | dat$Height < 0.0184)),] <- NA
dat <- na.omit(dat)
transformed.rings <- dat$Rings
transformed.height <- dat$Height
par(mfrow=c(2,2))
plot(transformed.height, transformed.rings, col = addTrans("orange",120), pch = 19,

cex = 0.8, axes = FALSE, xlab="",ylab="")
axis(side = 1, at = seq(0,0.25,0.05), as.character(seq(0,0.25,0.05)), font = 5)
axis(side = 2, at = seq(0,30,5), as.character(seq(0,30,5)), font = 5)
abline(v = seq(0,0.25,0.05), h = seq(0,30,5), col = "gray70", lty = 2)
mtext(side = 2, text = "Rings", font = 3, line = 3)
mtext(side = 1, text = "Height", font = 3, line = 3)
with(dat, points(transformed.height, transformed.rings, col = addTrans("orange",120),

cex = 0.8, pch = 19))
with(dat, points(transformed.height, transformed.rings, col = "orange", pch = 1,

cex = 0.8))
model4 <- lm(transformed.rings ~ transformed.height - 1)
abline(model4, col = "seagreen", lwd = 2)
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model5 <- lm(transformed.rings ~ transformed.height)
plot(model5, which = 2, col = addTrans("orange",120), pch = 19, axes = FALSE,

qqline = FALSE, cex.id = 0.75, caption = "", font.lab = 3)
axis(side = 1, at = seq(-4,4,1), labels = as.character(seq(-4,4,1)), font = 5)
axis(side = 2, at = seq(-4,7,1), labels = as.character(seq(-4,7,1)), font = 5)
qqline(scale(residuals(model5)), col = "seagreen", lty = 3)
secondpts <- qqnorm(scale(residuals(model5)), plot.it = FALSE)
abline(v = seq(-4,4,1), lty = 2, col = "gray80")
abline(h = seq(-4,7,1), lty = 2, col = "gray80")
points(secondpts, col = addTrans("orange",120))
points(secondpts, col = "orange")
qqline(scale(residuals(model5)), col = "seagreen", lty = 3)

#layout(matrix(c(1,2,3,3), 2, 2, byrow = T), widths = c(4,4,4))
plot(model5, which = 1, col = NA, pch = 19, axes = FALSE,

add.smooth = FALSE, caption = "", font.lab = 3)
axis(side = 1, at = seq(0,20,5),as.character(seq(0,20,5)),font = 5)
axis(side = 2, at = seq(-12,20,4), labels = as.character(seq(-12,20,4)),

font = 5)
abline(h = seq(-8,20,4), col = "gray75", lty = 2)
abline(v = seq(-8,20,4), col = "gray75", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(fitted(model5), residuals(model5), col = addTrans("orange",120), pch = 19)
points(fitted(model5), residuals(model5), col = "orange")
panel.smooth(fitted(model5), residuals(model5), col = "orange",cex = 1,

col.smooth = "seagreen", span = 2/3, iter = 3)

plot(transformed.height, residuals(model5),
col = NA, pch = 19, axes = FALSE, xlab = "", ylab = "")

axis(side = 1, at = seq(0,0.25,0.05),as.character( seq(0,0.25,0.05)),font = 5)
axis(side = 2, at = seq(-8,20,4), labels = as.character(seq(-8,20,4)),

font = 5)
abline(h = seq(-8,20,4), col = "gray75", lty = 2)
abline(v = seq(0,0.25,0.05), col = "gray75", lty = 2)
abline(0,0, lty = 2, col = "gray45")
points(transformed.height,

residuals(model5),
col = addTrans("orange",120), pch = 19)

points(transformed.height,
residuals(model5),
col = "orange")

mtext(side = 2, text = "Residuals", font = 3, line = 3, cex = 0.85)
mtext(side = 1, text = "Height", font = 3, line = 3, cex = 0.85)
panel.smooth(transformed.height,

residuals(model5),
col = "orange",cex = 1,col.smooth = "seagreen", span = 2/3, iter = 3)

#par(mar = c(5,20,4,18) + 0.1)
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